
Invasive Software Composition

Uwe Aßmann
Research Center for Integrational Software Engineering (RISE)

PELAB IDA

Linköpings Universitet

Invited Talk at British Computer Society (BCS)
April 9, 2003, London

2

Contents

 A little history of software composition
 Comparison criteria for composition

 How it is realized for Invasive Software Composition
 Future software composition systems

3

Software Composition

Component Model Composition Technique

Composition Language

4

Historical Approaches to Components

5

Composition
recipe

Connectors

 Components

Component-based
applications

Blackbox Composition

Classical
Component Systems

Architecture Systems

Aspect Systems View Systems

Darwin
ACME

Aspect/J Invasive Composition
Metaclass Composition

Piccola

Standard Components

Architecture as Aspect

Aspect Separation
Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85
Modules as Compile-
Time Components

Composition Filters
Hyperslices

Software
Composition
Systems

.NET CORBA
Beans EJB

7

Component

Connector
Component

Port

Interface

Role

Most Advanced:
Software Architecture Systems

8

Reuse of components and architectures is fundamentally improved

Architecture can be exchanged
independently of components

Port 2

Port 1

PortPort Component

Component

Component

9

Architecture Systems

 ACME (Garlan, CMU)
 Darwin (Kramer, Magee, Imperial College)
 Unicon (Shaw, CMU)
 CoSy (ACE b.V., Amsterdam, commercialized for compilers of

embedded systems, http://www.ace.nl)

http://www.ace.nl/

10

Architecture Systems as Composition
Systems

Component Model Composition Technique

Composition Language

Source or binary components

Binding points: ports

Adaptation and glue code by connectors

Scaling by exchange of connectors

Architectural language

Classical
Component Systems

Architecture Systems

Aspect Systems View Systems

Darwin
ACME

Aspect/J Invasive Composition
Metaclass Composition

Piccola

Standard Components

Architecture as Aspect

Aspect Separation
Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85
Modules as Compile-
Time Components

Composition Filters
Hyperslices

Software
Composition
Systems

.NET CORBA
Beans EJB

12

Graybox Component Models

13

The Essence of the Last 5 Years

 Aspect-oriented Programming
 View-based Programming

Component Integration

Structure
Interfaces

Light Plan Pipe Plan

Integrated House

Debugging
 aspect

Persistence
aspectAlgorithm

Debugging aspect

Persistence aspect

Persistence
aspectDebugging aspect

Weaver-Tool

Debugging aspect

16

Aspect Systems

 Aspect languages
 Every aspect in a separate language
 Domain specific
 Weaver must be build (is a compiler, much effort)

 Script based Weavers
 The weaver interprets a specific script or aspect program
 This introduces the aspect into the core

17

Example: Inject/J injectj.fzi.de

 Script based weaver (T. Genssler)
 More powerful composition language than Aspect/J

 Based on explicit static metaprogramming
 Navigations on classes and methods of the core
 Pattern matching
 Weaving in code at arbitrary places

 Builds on Java RECODER http://recoder.sf.net
 Useful for

 Automated refactorings
 Compositions
 Generative Programming

http://recoder.sf.net/

18

Inject/J

script BeforeAfterExample {
 // Only visit classes in package Testpackage
 foreach class 'Testpackage.*' <=c> do {
 // In this class, visit all methods with no parameters
 foreach method '*()' <=m> do {
 // Now insert in some debug code in the method body...
 before ${
 System.out.println("Entering <m.signature> in class <c.name>");
 }$;
 after ${
 System.out.println("Leaving ..");
 }$;
 }
 }
}

19

Aspect Systems As Composition
Systems

Component Model Composition Technique

Composition Language

Core- and aspect components

Aspects are relative and
crosscutting

Bindung points: join points
Adaptation and glue code by weaving

Weaving Language

20

Invasive Software Composition -
A Fragment-Based Composition
Technique

21

Invasive Composition

Component Model Composition Technique

Composition Language

Fragment Components Transformation
Of Hooks

Standard Language

22

Invasive Composition

 Invasive composition
 adapts and extends

components
at hooks

by transformation

23

The Component Model of Invasive
Composition

 The component is a fragment container (fragment box)
 a set of fragments/tag elements

 Uniform representation of
 a software component
 a class, a package, a method
 an aspect
 a meta description
 a composition program

24

 Software variation points
 Method entries/exits
 Generic parameters

 Fragment Components Have Hooks

Hooks are variation points of a component:
fragments or positions,

which are subject to change

25

Implicit Hooks In Software

 Example Method Entry/Exit

m (){

 abc..
 cde..

}

Method.entry

Method.exit

Given by the programming language

26

Declared Hooks

Declarations

 Declared Hooks are declared by the box writer as
variables in the hook’s tags.

27

X
SuperClass

<superclasshook> X </superclasshook>

class Set extends genericXSuperClass { }

class Set /* @superClass */

Declaration of Hooks

 Language extensions with new keywords
 Markup Tags
 Standardized Names (Hungarian Notation)
 Comment Tags

28

Generic Modifiers

/* @hook Modifier MY */ public print() {
 System.out.println(“Hello World”);
}

Component methodComponent = cs.createMethodBox();
 Hook modif = methodComponent.findHook(“MY”);
if (parallelVersion) {
 modif.bind(“synchronized”);
} else {
 modif.bind(“ ”);

Component methodComponent = cs.createMethodBox();
 Hook modif = methodComponent.findHook(“MY”);
if (parallelVersion) {
 modif.bind(“synchronized”);
} else {
 modif.bind(“ ”);

synchronized public print () {
 System.out.println(“Hello

World”);
}

 public print () {
 System.out.println(“Hello

World”);
}

29

Generic Statements

public print() {
 @hook Statement MY;
}

Component methodComponent = cs.createMethodBox();
 Hook statement = methodComponent.findHook(“MY”);
if (StdoutVersion) {
 statement.bind(“System.out.println(“Hello World”);”);
} else {
 statement.bind(“FileWriter.println(“no way”);”);

Component methodComponent = cs.createMethodBox();
 Hook statement = methodComponent.findHook(“MY”);
if (StdoutVersion) {
 statement.bind(“System.out.println(“Hello World”);”);
} else {
 statement.bind(“FileWriter.println(“no way”);”);

synchronized public print () {
 System.out.println(“Hello

World”);
}

public print () {
 FileWriter.println(“no way”);
}

30

When Do you Need Invasive
Composition

 When static relations have to be adapted
 inheritance relationship
 import relationship

 Delegation pointers have to be inserted

31

The Composition Technique of
Invasive Composition

A composer transforms unbound to bound hooks

composer: box with hooks --> box with tags

 Invasive Composition
 adapts and extends

components
at hooks

by transformation

32

Composer

Invasively transformed code

The Composition Technique of
Invasive Composition

Static
Metaprogram

Transformer
Generator

Uniform for
declared and
implicit hooks

MethodEntry MethodEntry

MethodExitMethodExit

m (){

 abc..
 cde..

}

m (){
 print(“enter m”);
 abc..
 cde..
 print(“exit m”);
}

component.findHook(„MethodEntry“).extend(“print(\”enter m\”);”);

component.findHook(„MethodExit“).extend(“print(\”exit m\”);”);

34

On the Difference of Declared
and Implicit Hooks

/* @genericMYModifier */ public print() {
 <<prologue>>
 if (1 == 2)
 System.out.println(“Hello World”);
 <<epilogue>>
 return;
 else
 System.out.println(“Bye World”);
 <<epilogue>>
 return;
}

if (parallel)
 Hook h = methodComponent.findHook(“MY”);
if (h instanceof MethodExit) h.bind(“synchronized”);
else
methodComponent.findHook(“MY”).bind(“ ”);

synchronized public print () {
}

35

The Composition Language of
Invasive Composition

 For combination of the basic composition operations
 Composition programs result
 Using standard languages

 XML itself
 Java

 Enables us to describe large systems

Composition program size 1
System size 10

36

What Can You Do With
Invasive Composition?

37

Atomic and Compound
Composition Operators

 bind hook (parameterization)
■ generalized generic program

elements
 rename component, rename

hook
 remove value from hook

(unbind)
 extend

 extend in different semantic
versions

 Inheritance
 view-based programming
 intrusive data functors

 connect (bind hook 1 and 2)
 distribute

■ aspect weaving

Basic Composition Algebra

38

Composers Generalize Connectors
(ADL Component Model)

boxes + composers + declared hooks

boxes + connectors + ports

39

Can be declared by calls to standard methods (as in Linda)

Hooks for Communications (Ports)

m (){

 out(d);
 in(e);

}

Output port

Input port

m (){
 // call
 e = p(d);
}

m (){
 // event communication
 notifyObservers(d);
 e = listen_to();
}

40

Client Library

Client Library

Black box
connection
with glue code

Client Library

Invasive
connection

Black box
composition

Invasive
composition

Subsyste
m

[TOOLS 2000]

41

Composers Can Be Used For
Skeletons (Coordinator)

coordinator

 Instead of functions or
modules, skeletons can be
defined over fragment
components

 CoSy coordination schemes
(ACE compiler component
framework www.ace.nl)

 Compose basic components
with coordinating operators

http://www.ace.nl/

42

Composers Generalize Inheritance
Operators (Classes as Components)

boxes + composers + declared hooks

boxes + mixin + feature lists

43

inherit

■ Extension can be used
for inheritance (mixins)

■ inheritance :=
■ copy first super

document
■ extend with second

super document

Composers Can Be Used For
Inheritance

44

Sound Extensions (Views That Do Not
Destroy Contracts)

 Invasive Composition works if
dependencies are

 Absent
 Forward flow

 Core components don't
change

 Can be checked with slicing
or analysis, or regression
testing

45

Composers can be Used for AOP
(Core and Aspect Components)

Distributor

 Complex composers
distribute aspect fragments
over core fragments

 Distributors extend the core
 Distributors are more

complex operators, defined
from basic ones

Aspect

Core

46

Debugging aspectDebugging aspect

PersistencyPersistency
AlgorithmAlgorithm

PersistencyDebugging

OpOp

Debugging

OpOp

OpOp

OpOp

OpOp

OpOp

Persistency

Distributor

Weavers As Distributors

47

Invasively transformed tags

Sound Aspects (Aspects That Do Not
Destroy Contracts)

 Invasive Aspect Weaving
works if dependencies are

 Absent
 Forward flow

 Core components don't
change

 Can be checked with slicing
or analysis, or regression
testing

Invasively transformed tags

48

Simple Weavers

 distributeOverMethods
 Weave a prologue and an epilogue into a class or package tree
 implemented as a navigator over the tree
 applies simple hook extensions on entry and exit hook

 Hungarian aspect boxes
 Carry an aspect with Hungarian notation
 Weavers weave with naming conventions

49

A Simple Weaver

// Initialize composition system
JavaCompositionSystem cs = new JavaCompositionSystem(outputPath);

// Loading components.

// The core component
CompilationUnitBox cuToBeExtended = cs.createCompilationUnitBox("DemoClass");
// The aspect
ClassBox aspectClass = cs.createClassBox("BeforeAfterAspect.java");

// Now distribute the aspect over the core
cuToBeExtended.distributeMethods(aspectClass);

// Export
cs.printAll();

50

Weaving with Modular Join Point
Adressing

 M. Karlsson's masters thesis
JoinPoint Adressing

Expression

JoinPoint Adressing
Expression

AspectAspect
AlgorithmAlgorithm

Aspect

OpOp

OpOp

OpOp

OpOp

OpOp

OpOp

Aspect

Distributor

51

The COMPOsition SysTem
COMPOST

 COMPOST is the first system to support invasive composition
for Java

 Library of static meta-programs
 Composition language Java
 Reifies concepts Boxes, Hooks, Composers

 and many other things

52

COMPOST for Everybody

 0.78 is out (Uni Karlsruhe/Uni Linköping)
 http://www.the-compost-system.org
 We expect a new major version in April 2004

 Contains refactoring engine RECODER as transformation
subsystem

 http://recoder.sf.net
 Invasive Software Composition, U. Aßmann, Springer.
 Developed within the EASYCOMP project

 EU FET Basic Research “Easy Composition in Future Generation
Component Systems”

 New component models for XML, COTS, runtime components
(Uniform composition)

 We are refactoring towards a uniform XML version

http://www.the-compost-system.org/
http://recoder.sf.net/

53

Invasive Software Composition
as
Composition Technique

54

Invasive Composition:
Component Model

 Graybox components instead of black box ones
 Composition interfaces with declared hooks
 Implicit composition interfaces with implicit hooks
 The composition programs produce the functional interfaces

 Resulting in efficient systems, because superfluous functional
interfaces are removed from the system

 Content: source code
 binary components also possible, poorer metamodel

 Aspects are just a new type of component
 Fragment-based Parameterisation a la BETA slots

 Type-safe parameterization on all kinds of fragments

55

 Invasive Composition:
Composition Technique

 Adaptation and glue code: good, composers are program
transformers and generators

 Aspect weaving
 Parties may write their own weavers
 No special languages

 Extensions:
 Hooks can be extended
 Soundness criteria of lambdaN still apply
 Metamodelling employed

 Not yet scalable to run time

56

Composition Language

 Various languages can be used
 Product quality improved by metamodel-based typing of

compositions
 Metacomposition possible

 Architectures can be described in a standard object-oriented
language and reused

 An assembler for composition
 Other, more adequate composition languages can be compiled

57

Invasive Composition as
Composition System

Component model Composition technique

Composition language

Source or binary components

Greybox components

Composition interfaces
with declared an implicit hooks

Algebra of composition operators

Uniform on declared and implicit hooks

Standard Language

58

Unification of Development
Techniques

 With the uniform treatment of declared and implicit hooks,
several technologies can be unified:

 Generic programming
 Inheritance-based programming
 Connector-based programming
 View-based programming
 Aspect-based programming

59

Conclusions for ISC

 Fragment-based composition technology
 Graybox components
 Producing tightly integrated systems

 Components have composition interface
 From the composition interface, the functional interface is derived
 Composition interface is different from functional interface
 Overlaying of classes (role model composition)

60

Different Forms of Greyboxes

61

Refactorings
Transformations

Refactoring as Whitebox
Operation

 Refactoring works directly on the AST/ASG
 Attaching/removing/replacing fragments
 Whitebox reuse

62

Composition
with implicit
hooks

Refactorings
Transformations

Weaving as Light-Grey Operation

 Aspect weaving and view composition works on implicit hooks
(join points)

 Implicit composition interface

63

Refactorings
Transformations

Parameterization as Darker-Grey
Operation

 Templates work on declared hooks
 Declared composition interface

Composition
with declared
hooks

64

Composition
with declared
hooks

Composition
with implicit
hooks

Refactorings
Transformations

Systematization Towards Greybox
Component Models

65

RefactoringRefactoring

Refactoring Builds On Transformation
Of Abstract Syntax

66

ComposerComposer

Invasively transformed codeInvasively transformed code

Invasive Composition Builds On
Transformation Of Implicit Hooks

67

ComposerComposer

Invasively transformed codeInvasively transformed code

Invasive Composition Builds On
Transformation on Declared Hooks

68

Future Composition Systems

69

What Is A Component?

 Cannot be stated in general
 Component models must be defined

 We must investigate composition techniques
 And languages

 Domain-specific ones (composition-oriented composition
languages)

 General ones
 We should build frameworks for all component models

 Generic component models
 Generic composition technique
 Scalability!

70

Types of Composition Systems

 Software Composition Systems
 Blackbox Composition Systems
 Graybox Composition Systems (Integrational Systems)
 Turing-complete composition languages
 [Invasive Software Composition, Aßmann, Springer 2003]

 Uniform Composition Systems
 Supporting multiple languages
 Supporting XML
 Active documents
 Uniform treatment of software and data
 Based on software composition systems

71

Composition
recipe

Invasive composition

operations

Components
Software

composition

Uniform
composition

Integrated system

Integrational
Software Engineering

Classical
Component Systems

Architecture Systems

Aspect Systems View Systems

Darwin
ACME

Aspect/J Invasive Composition
Metaclass Composition

Piccola

Standard Components

Architecture as Aspect

Aspect Separation
Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85
Modules as Compile-
Time Components

Composition Filters
Hyperslices

Software
Composition
Systems

.NET CORBA
Beans EJB

Integrational Systems
Uniform on XML

Composition
Language

Many integration
techiques

73

The End

 http://www.easycomp.org
 http://www.the-compost-system.org
 http://recoder.sf.net
 http://injectj.fzi.de

 Invasive Software Composition, U. Aßmann, Springer.

http://www.easycomp.org/
http://www.the-compost-system.org/
http://recoder.sf.net/
http://injectj.fzi.de/

