
Invasive Software Composition

Uwe Aßmann
Research Center for Integrational Software Engineering (RISE)

PELAB IDA

Linköpings Universitet

Invited Talk at British Computer Society (BCS)
April 9, 2003, London

2

Contents

 A little history of software composition
 Comparison criteria for composition

 How it is realized for Invasive Software Composition
 Future software composition systems

3

Software Composition

Component Model Composition Technique

Composition Language

4

Historical Approaches to Components

5

Composition
recipe

Connectors

 Components

Component-based
applications

Blackbox Composition

Classical
Component Systems

Architecture Systems

Aspect Systems View Systems

Darwin
ACME

Aspect/J Invasive Composition
Metaclass Composition

Piccola

Standard Components

Architecture as Aspect

Aspect Separation
Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85
Modules as Compile-
Time Components

Composition Filters
Hyperslices

Software
Composition
Systems

.NET CORBA
Beans EJB

7

Component

Connector
Component

Port

Interface

Role

Most Advanced:
Software Architecture Systems

8

Reuse of components and architectures is fundamentally improved

Architecture can be exchanged
independently of components

Port 2

Port 1

PortPort Component

Component

Component

9

Architecture Systems

 ACME (Garlan, CMU)
 Darwin (Kramer, Magee, Imperial College)
 Unicon (Shaw, CMU)
 CoSy (ACE b.V., Amsterdam, commercialized for compilers of

embedded systems, http://www.ace.nl)

http://www.ace.nl/

10

Architecture Systems as Composition
Systems

Component Model Composition Technique

Composition Language

Source or binary components

Binding points: ports

Adaptation and glue code by connectors

Scaling by exchange of connectors

Architectural language

Classical
Component Systems

Architecture Systems

Aspect Systems View Systems

Darwin
ACME

Aspect/J Invasive Composition
Metaclass Composition

Piccola

Standard Components

Architecture as Aspect

Aspect Separation
Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85
Modules as Compile-
Time Components

Composition Filters
Hyperslices

Software
Composition
Systems

.NET CORBA
Beans EJB

12

Graybox Component Models

13

The Essence of the Last 5 Years

 Aspect-oriented Programming
 View-based Programming

Component Integration

Structure
Interfaces

Light Plan Pipe Plan

Integrated House

Debugging
 aspect

Persistence
aspectAlgorithm

Debugging aspect

Persistence aspect

Persistence
aspectDebugging aspect

Weaver-Tool

Debugging aspect

16

Aspect Systems

 Aspect languages
 Every aspect in a separate language
 Domain specific
 Weaver must be build (is a compiler, much effort)

 Script based Weavers
 The weaver interprets a specific script or aspect program
 This introduces the aspect into the core

17

Example: Inject/J injectj.fzi.de

 Script based weaver (T. Genssler)
 More powerful composition language than Aspect/J

 Based on explicit static metaprogramming
 Navigations on classes and methods of the core
 Pattern matching
 Weaving in code at arbitrary places

 Builds on Java RECODER http://recoder.sf.net
 Useful for

 Automated refactorings
 Compositions
 Generative Programming

http://recoder.sf.net/

18

Inject/J

script BeforeAfterExample {
 // Only visit classes in package Testpackage
 foreach class 'Testpackage.*' <=c> do {
 // In this class, visit all methods with no parameters
 foreach method '*()' <=m> do {
 // Now insert in some debug code in the method body...
 before ${
 System.out.println("Entering <m.signature> in class <c.name>");
 }$;
 after ${
 System.out.println("Leaving ..");
 }$;
 }
 }
}

19

Aspect Systems As Composition
Systems

Component Model Composition Technique

Composition Language

Core- and aspect components

Aspects are relative and
crosscutting

Bindung points: join points
Adaptation and glue code by weaving

Weaving Language

20

Invasive Software Composition -
A Fragment-Based Composition
Technique

21

Invasive Composition

Component Model Composition Technique

Composition Language

Fragment Components Transformation
Of Hooks

Standard Language

22

Invasive Composition

 Invasive composition
 adapts and extends

components
at hooks

by transformation

23

The Component Model of Invasive
Composition

 The component is a fragment container (fragment box)
 a set of fragments/tag elements

 Uniform representation of
 a software component
 a class, a package, a method
 an aspect
 a meta description
 a composition program

24

 Software variation points
 Method entries/exits
 Generic parameters

 Fragment Components Have Hooks

Hooks are variation points of a component:
fragments or positions,

which are subject to change

25

Implicit Hooks In Software

 Example Method Entry/Exit

m (){

 abc..
 cde..

}

Method.entry

Method.exit

Given by the programming language

26

Declared Hooks

Declarations

 Declared Hooks are declared by the box writer as
variables in the hook’s tags.

27

X
SuperClass

<superclasshook> X </superclasshook>

class Set extends genericXSuperClass { }

class Set /* @superClass */

Declaration of Hooks

 Language extensions with new keywords
 Markup Tags
 Standardized Names (Hungarian Notation)
 Comment Tags

28

Generic Modifiers

/* @hook Modifier MY */ public print() {
 System.out.println(“Hello World”);
}

Component methodComponent = cs.createMethodBox();
 Hook modif = methodComponent.findHook(“MY”);
if (parallelVersion) {
 modif.bind(“synchronized”);
} else {
 modif.bind(“ ”);

Component methodComponent = cs.createMethodBox();
 Hook modif = methodComponent.findHook(“MY”);
if (parallelVersion) {
 modif.bind(“synchronized”);
} else {
 modif.bind(“ ”);

synchronized public print () {
 System.out.println(“Hello

World”);
}

 public print () {
 System.out.println(“Hello

World”);
}

29

Generic Statements

public print() {
 @hook Statement MY;
}

Component methodComponent = cs.createMethodBox();
 Hook statement = methodComponent.findHook(“MY”);
if (StdoutVersion) {
 statement.bind(“System.out.println(“Hello World”);”);
} else {
 statement.bind(“FileWriter.println(“no way”);”);

Component methodComponent = cs.createMethodBox();
 Hook statement = methodComponent.findHook(“MY”);
if (StdoutVersion) {
 statement.bind(“System.out.println(“Hello World”);”);
} else {
 statement.bind(“FileWriter.println(“no way”);”);

synchronized public print () {
 System.out.println(“Hello

World”);
}

public print () {
 FileWriter.println(“no way”);
}

30

When Do you Need Invasive
Composition

 When static relations have to be adapted
 inheritance relationship
 import relationship

 Delegation pointers have to be inserted

31

The Composition Technique of
Invasive Composition

A composer transforms unbound to bound hooks

composer: box with hooks --> box with tags

 Invasive Composition
 adapts and extends

components
at hooks

by transformation

32

Composer

Invasively transformed code

The Composition Technique of
Invasive Composition

Static
Metaprogram

Transformer
Generator

Uniform for
declared and
implicit hooks

MethodEntry MethodEntry

MethodExitMethodExit

m (){

 abc..
 cde..

}

m (){
 print(“enter m”);
 abc..
 cde..
 print(“exit m”);
}

component.findHook(„MethodEntry“).extend(“print(\”enter m\”);”);

component.findHook(„MethodExit“).extend(“print(\”exit m\”);”);

34

On the Difference of Declared
and Implicit Hooks

/* @genericMYModifier */ public print() {
 <<prologue>>
 if (1 == 2)
 System.out.println(“Hello World”);
 <<epilogue>>
 return;
 else
 System.out.println(“Bye World”);
 <<epilogue>>
 return;
}

if (parallel)
 Hook h = methodComponent.findHook(“MY”);
if (h instanceof MethodExit) h.bind(“synchronized”);
else
methodComponent.findHook(“MY”).bind(“ ”);

synchronized public print () {
}

35

The Composition Language of
Invasive Composition

 For combination of the basic composition operations
 Composition programs result
 Using standard languages

 XML itself
 Java

 Enables us to describe large systems

Composition program size 1
System size 10

36

What Can You Do With
Invasive Composition?

37

Atomic and Compound
Composition Operators

 bind hook (parameterization)
■ generalized generic program

elements
 rename component, rename

hook
 remove value from hook

(unbind)
 extend

 extend in different semantic
versions

 Inheritance
 view-based programming
 intrusive data functors

 connect (bind hook 1 and 2)
 distribute

■ aspect weaving

Basic Composition Algebra

38

Composers Generalize Connectors
(ADL Component Model)

boxes + composers + declared hooks

boxes + connectors + ports

39

Can be declared by calls to standard methods (as in Linda)

Hooks for Communications (Ports)

m (){

 out(d);
 in(e);

}

Output port

Input port

m (){
 // call
 e = p(d);
}

m (){
 // event communication
 notifyObservers(d);
 e = listen_to();
}

40

Client Library

Client Library

Black box
connection
with glue code

Client Library

Invasive
connection

Black box
composition

Invasive
composition

Subsyste
m

[TOOLS 2000]

41

Composers Can Be Used For
Skeletons (Coordinator)

coordinator

 Instead of functions or
modules, skeletons can be
defined over fragment
components

 CoSy coordination schemes
(ACE compiler component
framework www.ace.nl)

 Compose basic components
with coordinating operators

http://www.ace.nl/

42

Composers Generalize Inheritance
Operators (Classes as Components)

boxes + composers + declared hooks

boxes + mixin + feature lists

43

inherit

■ Extension can be used
for inheritance (mixins)

■ inheritance :=
■ copy first super

document
■ extend with second

super document

Composers Can Be Used For
Inheritance

44

Sound Extensions (Views That Do Not
Destroy Contracts)

 Invasive Composition works if
dependencies are

 Absent
 Forward flow

 Core components don't
change

 Can be checked with slicing
or analysis, or regression
testing

45

Composers can be Used for AOP
(Core and Aspect Components)

Distributor

 Complex composers
distribute aspect fragments
over core fragments

 Distributors extend the core
 Distributors are more

complex operators, defined
from basic ones

Aspect

Core

46

Debugging aspectDebugging aspect

PersistencyPersistency
AlgorithmAlgorithm

PersistencyDebugging

OpOp

Debugging

OpOp

OpOp

OpOp

OpOp

OpOp

Persistency

Distributor

Weavers As Distributors

47

Invasively transformed tags

Sound Aspects (Aspects That Do Not
Destroy Contracts)

 Invasive Aspect Weaving
works if dependencies are

 Absent
 Forward flow

 Core components don't
change

 Can be checked with slicing
or analysis, or regression
testing

Invasively transformed tags

48

Simple Weavers

 distributeOverMethods
 Weave a prologue and an epilogue into a class or package tree
 implemented as a navigator over the tree
 applies simple hook extensions on entry and exit hook

 Hungarian aspect boxes
 Carry an aspect with Hungarian notation
 Weavers weave with naming conventions

49

A Simple Weaver

// Initialize composition system
JavaCompositionSystem cs = new JavaCompositionSystem(outputPath);

// Loading components.

// The core component
CompilationUnitBox cuToBeExtended = cs.createCompilationUnitBox("DemoClass");
// The aspect
ClassBox aspectClass = cs.createClassBox("BeforeAfterAspect.java");

// Now distribute the aspect over the core
cuToBeExtended.distributeMethods(aspectClass);

// Export
cs.printAll();

50

Weaving with Modular Join Point
Adressing

 M. Karlsson's masters thesis
JoinPoint Adressing

Expression

JoinPoint Adressing
Expression

AspectAspect
AlgorithmAlgorithm

Aspect

OpOp

OpOp

OpOp

OpOp

OpOp

OpOp

Aspect

Distributor

51

The COMPOsition SysTem
COMPOST

 COMPOST is the first system to support invasive composition
for Java

 Library of static meta-programs
 Composition language Java
 Reifies concepts Boxes, Hooks, Composers

 and many other things

52

COMPOST for Everybody

 0.78 is out (Uni Karlsruhe/Uni Linköping)
 http://www.the-compost-system.org
 We expect a new major version in April 2004

 Contains refactoring engine RECODER as transformation
subsystem

 http://recoder.sf.net
 Invasive Software Composition, U. Aßmann, Springer.
 Developed within the EASYCOMP project

 EU FET Basic Research “Easy Composition in Future Generation
Component Systems”

 New component models for XML, COTS, runtime components
(Uniform composition)

 We are refactoring towards a uniform XML version

http://www.the-compost-system.org/
http://recoder.sf.net/

53

Invasive Software Composition
as
Composition Technique

54

Invasive Composition:
Component Model

 Graybox components instead of black box ones
 Composition interfaces with declared hooks
 Implicit composition interfaces with implicit hooks
 The composition programs produce the functional interfaces

 Resulting in efficient systems, because superfluous functional
interfaces are removed from the system

 Content: source code
 binary components also possible, poorer metamodel

 Aspects are just a new type of component
 Fragment-based Parameterisation a la BETA slots

 Type-safe parameterization on all kinds of fragments

55

 Invasive Composition:
Composition Technique

 Adaptation and glue code: good, composers are program
transformers and generators

 Aspect weaving
 Parties may write their own weavers
 No special languages

 Extensions:
 Hooks can be extended
 Soundness criteria of lambdaN still apply
 Metamodelling employed

 Not yet scalable to run time

56

Composition Language

 Various languages can be used
 Product quality improved by metamodel-based typing of

compositions
 Metacomposition possible

 Architectures can be described in a standard object-oriented
language and reused

 An assembler for composition
 Other, more adequate composition languages can be compiled

57

Invasive Composition as
Composition System

Component model Composition technique

Composition language

Source or binary components

Greybox components

Composition interfaces
with declared an implicit hooks

Algebra of composition operators

Uniform on declared and implicit hooks

Standard Language

58

Unification of Development
Techniques

 With the uniform treatment of declared and implicit hooks,
several technologies can be unified:

 Generic programming
 Inheritance-based programming
 Connector-based programming
 View-based programming
 Aspect-based programming

59

Conclusions for ISC

 Fragment-based composition technology
 Graybox components
 Producing tightly integrated systems

 Components have composition interface
 From the composition interface, the functional interface is derived
 Composition interface is different from functional interface
 Overlaying of classes (role model composition)

60

Different Forms of Greyboxes

61

Refactorings
Transformations

Refactoring as Whitebox
Operation

 Refactoring works directly on the AST/ASG
 Attaching/removing/replacing fragments
 Whitebox reuse

62

Composition
with implicit
hooks

Refactorings
Transformations

Weaving as Light-Grey Operation

 Aspect weaving and view composition works on implicit hooks
(join points)

 Implicit composition interface

63

Refactorings
Transformations

Parameterization as Darker-Grey
Operation

 Templates work on declared hooks
 Declared composition interface

Composition
with declared
hooks

64

Composition
with declared
hooks

Composition
with implicit
hooks

Refactorings
Transformations

Systematization Towards Greybox
Component Models

65

RefactoringRefactoring

Refactoring Builds On Transformation
Of Abstract Syntax

66

ComposerComposer

Invasively transformed codeInvasively transformed code

Invasive Composition Builds On
Transformation Of Implicit Hooks

67

ComposerComposer

Invasively transformed codeInvasively transformed code

Invasive Composition Builds On
Transformation on Declared Hooks

68

Future Composition Systems

69

What Is A Component?

 Cannot be stated in general
 Component models must be defined

 We must investigate composition techniques
 And languages

 Domain-specific ones (composition-oriented composition
languages)

 General ones
 We should build frameworks for all component models

 Generic component models
 Generic composition technique
 Scalability!

70

Types of Composition Systems

 Software Composition Systems
 Blackbox Composition Systems
 Graybox Composition Systems (Integrational Systems)
 Turing-complete composition languages
 [Invasive Software Composition, Aßmann, Springer 2003]

 Uniform Composition Systems
 Supporting multiple languages
 Supporting XML
 Active documents
 Uniform treatment of software and data
 Based on software composition systems

71

Composition
recipe

Invasive composition

operations

Components
Software

composition

Uniform
composition

Integrated system

Integrational
Software Engineering

Classical
Component Systems

Architecture Systems

Aspect Systems View Systems

Darwin
ACME

Aspect/J Invasive Composition
Metaclass Composition

Piccola

Standard Components

Architecture as Aspect

Aspect Separation
Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85
Modules as Compile-
Time Components

Composition Filters
Hyperslices

Software
Composition
Systems

.NET CORBA
Beans EJB

Integrational Systems
Uniform on XML

Composition
Language

Many integration
techiques

73

The End

 http://www.easycomp.org
 http://www.the-compost-system.org
 http://recoder.sf.net
 http://injectj.fzi.de

 Invasive Software Composition, U. Aßmann, Springer.

http://www.easycomp.org/
http://www.the-compost-system.org/
http://recoder.sf.net/
http://injectj.fzi.de/

