
SpartanMC

SpartanMC
Header file for peripheral access



SpartanMC



SpartanMC

Header file for peripheral access i

Table of Contents



SpartanMC

Header file for peripheral access ii



SpartanMC

Header file for peripheral access i

List of Figures



SpartanMC

Header file for peripheral access ii



SpartanMC

Header file for peripheral access i

List of Tables



SpartanMC

Header file for peripheral access ii



SpartanMC

Header file for peripheral access 1

MANPAGE – PERIPHERALS.H(3)

NAME

peripherals.h – Project header file for access to peripheral components

SYNOPSIS

#include <system/peripherals.h>

DESCRIPTION

For any SpartanMC project, the system builder jConfig generates a header file providing
the interface to all peripheral components present in your system. Variables pointing to
the respective I/O and/or DMA memory base addresses will be automatically provided
for each peripheral instance.

For a particular peripheral instance the name of the variable will be the respective
identifier as shown in the system builder jConfig converted to UPPER CASE (e.g.
UART_LIGHT_0). Each such variable will be a typed pointer tailored to the register I/
O space of the particular peripheral. In case a component offers DMA space you will
get another variable named <PERIPHERAL_NAME>_DMA pointing to the peripherals
DMA base address.

The header files defining the respective variable types can be found at spartanmc/in-
clude/peripherals/ (see section below for details). All files required for your systems
peripherals will be automatically included via peripherals.h.

IMPLEMENT CUSTOM PERIPHERALS

For each type of peripheral component a header file is required at spartanmc/in-
clude/peripherals/ declaring the particular data types (e.g. a struct) for register I/O and
DMA access. The header files name must be the same as the peripherals hardware
type.

If you add a custom peripheral component to the SpartanMC-SoC-Kit make sure you
provide the corresponding header file. For a component named e.g. my_peri a file
named my_peri.h is required. Within this file the following type declarations are ex-
pected to be found:

typedef ... my_peri_regs_t; /* register space access */

typedef ... my_peri_dma_t; /* DMA space access */



SpartanMC

Header file for peripheral access 2

Note that in case your peripheral does not implement registers or DMA space the re-
spective type declaration may be ommitted. Basically, the interface to a peripheral com-
ponent may be a pointer to an unsigned integer. In that case, the type definitions may
look like the following:

typedef unsigned int my_peri_regs_t; /* register space access */

typedef unsigned int my_peri_dma_t; /* DMA space access */

Note that there is no explicit pointer- or array-like declaration. The point where the
pointer comes in is at the variable instatiation in the generated header file.

To interface more complex peripherals it is wise declaring a structure with descriptive
names for the particular registers. Additionally to the type declaration the header file
may define bit constants to simplify bit wise access to the registers.

High level support functions operating on the peripherals registers and DMA space
should be defined in arbitrary named header files located at spartanmc/include. The
resepective implementation of such functions should be part of libperi, but could virtually
be implemented in any other library.

FILES

<project_dir>/
system/
peripherals.h

 
Header file to include for access to generated peripheral variables

<project_dir>/
system/
<subsystem_name>/
peripherals.h

 
Actual header file defining peripheral variables for the respective
subsystem. Included by peripherals.h depending on the actual
subsystem the firmware is built for.

SEE ALSO

hardware.h(3), spartanmc-libs(7)

AUTHORS

Copyright (c) 2011, 2012 Dresden University of Technology, Institute for Computer
Engineering, Chair for Embedded Systems.

Written by Markus Vogt


	Header file for peripheral access
	NAME
	SYNOPSIS
	DESCRIPTION
	IMPLEMENT CUSTOM PERIPHERALS
	FILES
	SEE ALSO
	AUTHORS


