Eigensystem of an extended Hubbard model on a tetrahedron

(see the paper: [2] Rigorous solution of a Hubbard model extended by nearest neighbour Coulomb and exchange interaction on a triangle and tetrahedron )
Some remarks:
  1. The numbers correspond to the state-numbers given in the appendix of Ref. [2].

  2. The first two lines give the quantum numbers used to differ the eigenstates,
    i.e. the electron occupation, the total spin of the state, the total spin projection,
    and the irreducible representation of the tetrahedral group.
    The next line gives the energy eigenvalue.
    The third line indicates the ket-vector again by the quantum numbers.
    It follows the eigenvector given in local Hubbard basis states.
    To get it in human-readable form I abbreviated the coefficients.
    These local abbreviations and the normalization constant of the eigenvectors
    are given separately at the end of every page.
    The local abbreviations contain global abbreviations Ai and Θi,
    which are given here or, alternatively, in the appendix B.2 of Ref. [2].

  3. The pdf-files can be viewed using Adobe-reader
    If somebody wants to work with the eigenstates,
    please, ask for the computer-generated unedited TeX-files via e-mail.

  1. Eigenvalues and Eigenvectors for Ne=0:
    1

  2. Eigenvectors for Ne=1:
    2 3 4 5 6 7 8 9

  3. Eigenvectors for Ne=2:
    10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

  4. Eigenvectors for Ne=3, spin-down states:
    38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

  5. Eigenvectors for Ne=3, spin-up states:
    66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

  6. Eigenvectors for Ne=4, spin-down states:
    94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  7. Eigenvectors for Ne=4, states with spin-projection 0:
    111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

  8. Eigenvectors for Ne=4, spin-up states:
    147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

  9. Eigenvectors for Ne=5, spin-down states:
    164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

  10. Eigenvectors for Ne=5, spin-up states:
    192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

  11. Eigenvectors for Ne=6:
    220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

  12. Eigenvectors for Ne=7:
    248 249 250 251 252 253 254 255

  13. Eigenvectors for Ne=8:
    256


(counter out of work) page requests since Jan 31 2001