Matrix t
2
*K
(2)
in Subspace 141 with Dimension 3
(K
(2)
is the second-order Grosse operator)
-3*t*U
(((3*I)/2)*(I + Sqrt[3])*t*U)/Sqrt[2]
0
(((-3*I)/2)*(-I + Sqrt[3])*t*U)/Sqrt[2]
(-9*t*U)/2
(I/4)*(3*I + Sqrt[3])*U^2
0
(-I/4)*(-3*I + Sqrt[3])*U^2
(-3*t*U)/2