Matrix t2*K(2) in Subspace 131 with Dimension 8
(K(2) is the second-order Grosse operator)
-5*t*U |
-((8*t^2 + U^2)/Sqrt[6]) |
t*U |
0 |
(t*U)/Sqrt[2] |
0 |
0 |
(-4*t^2 + U^2)/Sqrt[3] |
-((8*t^2 + U^2)/Sqrt[6]) |
(-11*t*U)/2 |
0 |
(t*U)/Sqrt[6] |
(-4*t^2)/Sqrt[3] |
-(Sqrt[3]*t*U) |
U^2/Sqrt[3] |
Sqrt[2]*t*U |
t*U |
0 |
-6*t*U |
4*t^2 |
(-3*t*U)/Sqrt[2] |
0 |
-(Sqrt[2]*t*U) |
0 |
0 |
(t*U)/Sqrt[6] |
4*t^2 |
-4*t*U |
-(U^2/Sqrt[2]) |
0 |
0 |
(2*t*U)/Sqrt[3] |
(t*U)/Sqrt[2] |
(-4*t^2)/Sqrt[3] |
(-3*t*U)/Sqrt[2] |
-(U^2/Sqrt[2]) |
(-9*t*U)/2 |
U^2 |
t*U |
4*Sqrt[2/3]*t^2 |
0 |
-(Sqrt[3]*t*U) |
0 |
0 |
U^2 |
-6*t*U |
-4*t^2 |
0 |
0 |
U^2/Sqrt[3] |
-(Sqrt[2]*t*U) |
0 |
t*U |
-4*t^2 |
-3*t*U |
-(Sqrt[2/3]*U^2) |
(-4*t^2 + U^2)/Sqrt[3] |
Sqrt[2]*t*U |
0 |
(2*t*U)/Sqrt[3] |
4*Sqrt[2/3]*t^2 |
0 |
-(Sqrt[2/3]*U^2) |
-2*t*U |