(-9*t*U)/2 |
0 |
0 |
0 |
0 |
-(t*U) |
0 |
(3*t*U)/2 |
0 |
(-3*t*U)/2 |
((33*Sqrt[4 - 4*Sqrt[2/11]] + 10*Sqrt[121 - 11*Sqrt[22]] - 22*Sqrt[22 - 2*Sqrt[22]])*U^2)/(44*Sqrt[52 - 8*Sqrt[22]]) |
((1001*Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]]*(264 + 5*Sqrt[22]))*U^2)/(528*Sqrt[26 + 4*Sqrt[22]]) |
0 |
(-25*t*U)/(6 + Sqrt[6]) |
-(Sqrt[5/6]*t*U) |
0 |
0 |
(4*(1 + Sqrt[6])*t^2)/Sqrt[6 + Sqrt[6]] |
0 |
0 |
0 |
0 |
-((33*Sqrt[2*(2 - 2*Sqrt[2/11])*(6 + Sqrt[6])] + 198*Sqrt[(6 + Sqrt[6])*(22 - 2*Sqrt[22])] + Sqrt[22*(6 + Sqrt[6])*(22 - 2*Sqrt[22])] + 66*Sqrt[3*(6 + Sqrt[6])*(11 - Sqrt[22])] - 80*Sqrt[11*(6 + Sqrt[6])*(11 - Sqrt[22])] + 48*Sqrt[66*(6 + Sqrt[6])*(11 - Sqrt[22])])*t*U)/(66*(6 + Sqrt[6])*Sqrt[52 - 8*Sqrt[22]]) |
((407*Sqrt[(2 + 2*Sqrt[2/11])*(6 + Sqrt[6])] - 264*Sqrt[6*(2 + 2*Sqrt[2/11])*(6 + Sqrt[6])] + (198 + 33*Sqrt[6] - Sqrt[22])*Sqrt[(6 + Sqrt[6])*(11 + Sqrt[22])])*t*U)/(66*(6 + Sqrt[6])*Sqrt[26 + 4*Sqrt[22]]) |
0 |
-(Sqrt[5/6]*t*U) |
(25*t^2*U)/(-6*t + Sqrt[6]*t) |
0 |
0 |
(4*(-1 + Sqrt[6])*t^2)/Sqrt[6 - Sqrt[6]] |
0 |
0 |
0 |
0 |
((330*Sqrt[(33 - 3*Sqrt[22])/(6 - Sqrt[6])] - 660*Sqrt[(22 - 2*Sqrt[22])/(6 - Sqrt[6])] + 108*Sqrt[(11*(11 - Sqrt[22]))/(6 - Sqrt[6])] + 72*Sqrt[(66*(11 - Sqrt[22]))/(6 - Sqrt[6])] + 11*Sqrt[3*(6 - Sqrt[6])*(11 - Sqrt[22])] + 6*Sqrt[66*(6 - Sqrt[6])*(11 - Sqrt[22])])*t*U)/(33*(-6 + Sqrt[6])*Sqrt[52 - 8*Sqrt[22]]) |
((1320*Sqrt[(11 + Sqrt[22])/(6 - Sqrt[6])] - 330*Sqrt[(6*(11 + Sqrt[22]))/(6 - Sqrt[6])] + 108*Sqrt[(22*(11 + Sqrt[22]))/(6 - Sqrt[6])] + 144*Sqrt[(33*(11 + Sqrt[22]))/(6 - Sqrt[6])] - 11*Sqrt[6*(6 - Sqrt[6])*(11 + Sqrt[22])] + 12*Sqrt[33*(6 - Sqrt[6])*(11 + Sqrt[22])])*t*U)/(66*(-6 + Sqrt[6])*Sqrt[26 + 4*Sqrt[22]]) |
0 |
0 |
0 |
-3*t*U |
3*Sqrt[2]*t*U |
0 |
Sqrt[3]*t*U |
(Sqrt[3]*(-4*t^2 + U^2))/2 |
0 |
2*Sqrt[3]*t^2 |
((Sqrt[33/(22 - 2*Sqrt[22])] + 2*Sqrt[3/(11 - Sqrt[22])])*t*U)/2 |
-((-4 + Sqrt[22])*Sqrt[3/(11 + Sqrt[22])]*t*U)/4 |
0 |
0 |
0 |
3*Sqrt[2]*t*U |
-6*t*U |
-2*Sqrt[6]*t^2 |
0 |
-(Sqrt[3/2]*U^2) |
0 |
0 |
((11*Sqrt[6] - 8*Sqrt[33])*t*U)/(22*Sqrt[2 - 2*Sqrt[2/11]]) |
-((11*Sqrt[6] + 8*Sqrt[33])*t*U)/(22*Sqrt[2 + 2*Sqrt[2/11]]) |
-(t*U) |
(4*(1 + Sqrt[6])*t^2)/Sqrt[6 + Sqrt[6]] |
(4*(-1 + Sqrt[6])*t^2)/Sqrt[6 - Sqrt[6]] |
0 |
-2*Sqrt[6]*t^2 |
-5*t*U |
0 |
0 |
-2*Sqrt[2]*t^2 |
-(t*U) |
((1 - Sqrt[2/11])*U^2)/Sqrt[2 - 2*Sqrt[2/11]] |
-((11 + Sqrt[22])*U^2)/(11*Sqrt[2 + 2*Sqrt[2/11]]) |
0 |
0 |
0 |
Sqrt[3]*t*U |
0 |
0 |
-3*t*U |
t^2*(2 + U^2/(2*t^2)) |
Sqrt[2]*t*U |
-2*t^2 |
-((33*Sqrt[4 - 4*Sqrt[2/11]] + Sqrt[484 - 44*Sqrt[22]] + 64*Sqrt[121 - 11*Sqrt[22]] + 198*Sqrt[22 - 2*Sqrt[22]])*t*U)/(132*Sqrt[52 - 8*Sqrt[22]]) |
-((385*Sqrt[2 + 2*Sqrt[2/11]] + (-198 + Sqrt[22])*Sqrt[11 + Sqrt[22]])*t*U)/(132*Sqrt[26 + 4*Sqrt[22]]) |
(3*t*U)/2 |
0 |
0 |
(Sqrt[3]*(-4*t^2 + U^2))/2 |
-(Sqrt[3/2]*U^2) |
0 |
t^2*(2 + U^2/(2*t^2)) |
(-15*t*U)/2 |
-(U^2/Sqrt[2]) |
(t*U)/2 |
(-4*(-11 + Sqrt[22])*t^2)/(11*Sqrt[2 - 2*Sqrt[2/11]]) |
(-4*(11 + Sqrt[22])*t^2)/(11*Sqrt[2 + 2*Sqrt[2/11]]) |
0 |
0 |
0 |
0 |
0 |
-2*Sqrt[2]*t^2 |
Sqrt[2]*t*U |
-(U^2/Sqrt[2]) |
-2*t*U |
0 |
((99*Sqrt[2 - 2*Sqrt[2/11]] + 15*Sqrt[242 - 22*Sqrt[22]] - 11*(Sqrt[44 - 4*Sqrt[22]] + 4*Sqrt[11 - Sqrt[22]]))*t*U)/(66*Sqrt[52 - 8*Sqrt[22]]) |
((33*Sqrt[4 + 4*Sqrt[2/11]] + 2*(11*Sqrt[2] + 5*Sqrt[11])*Sqrt[11 + Sqrt[22]])*t*U)/(44*Sqrt[26 + 4*Sqrt[22]]) |
(-3*t*U)/2 |
0 |
0 |
2*Sqrt[3]*t^2 |
0 |
-(t*U) |
-2*t^2 |
(t*U)/2 |
0 |
(-5*t*U)/2 |
(16*(2*Sqrt[121 - 11*Sqrt[22]] - 11*Sqrt[22 - 2*Sqrt[22]])*t^2 + (33*Sqrt[4 - 4*Sqrt[2/11]] + 2*Sqrt[121 - 11*Sqrt[22]] + 22*Sqrt[22 - 2*Sqrt[22]])*U^2)/(44*Sqrt[52 - 8*Sqrt[22]]) |
(2112*(Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]])*t^2 + (517*Sqrt[2 + 2*Sqrt[2/11]] + (-264 + Sqrt[22])*Sqrt[11 + Sqrt[22]])*U^2)/(528*Sqrt[26 + 4*Sqrt[22]]) |
((33*Sqrt[4 - 4*Sqrt[2/11]] + 10*Sqrt[121 - 11*Sqrt[22]] - 22*Sqrt[22 - 2*Sqrt[22]])*U^2)/(44*Sqrt[52 - 8*Sqrt[22]]) |
((33*Sqrt[2*(2 - 2*Sqrt[2/11])*(6 + Sqrt[6])] - 198*Sqrt[(6 + Sqrt[6])*(22 - 2*Sqrt[22])] + 5*Sqrt[22*(6 + Sqrt[6])*(22 - 2*Sqrt[22])] - 66*Sqrt[3*(6 + Sqrt[6])*(11 - Sqrt[22])] + 56*Sqrt[11*(6 + Sqrt[6])*(11 - Sqrt[22])] - 48*Sqrt[66*(6 + Sqrt[6])*(11 - Sqrt[22])])*t*U)/(66*(6 + Sqrt[6])*Sqrt[52 - 8*Sqrt[22]]) |
-(((352*Sqrt[2] + 286*Sqrt[3] - 244*Sqrt[11] + 19*Sqrt[66] + 11*Sqrt[(7 - 2*Sqrt[6])*(13 - 2*Sqrt[22])])*t*U)/((-6 + Sqrt[6])*Sqrt[(6 - Sqrt[6])*(22 - 2*Sqrt[22])]*(-11 + Sqrt[22]))) |
((Sqrt[33/(22 - 2*Sqrt[22])] + 2*Sqrt[3/(11 - Sqrt[22])])*t*U)/2 |
((-4*Sqrt[6/(11 - Sqrt[22])] + Sqrt[33/(11 - Sqrt[22])])*t*U)/2 |
-((-11 + Sqrt[22])*U^2)/(11*Sqrt[2 - 2*Sqrt[2/11]]) |
-((396*Sqrt[4 - 4*Sqrt[2/11]] + Sqrt[484 - 44*Sqrt[22]] + 22*(Sqrt[121 - 11*Sqrt[22]] + 12*Sqrt[22 - 2*Sqrt[22]]))*t*U)/(176*Sqrt[52 - 8*Sqrt[22]]) |
((4 - 4*Sqrt[2/11])*t^2)/Sqrt[2 - 2*Sqrt[2/11]] |
((99*Sqrt[2 - 2*Sqrt[2/11]] + 15*Sqrt[242 - 22*Sqrt[22]] - 11*(Sqrt[44 - 4*Sqrt[22]] + 4*Sqrt[11 - Sqrt[22]]))*t*U)/(66*Sqrt[52 - 8*Sqrt[22]]) |
(16*(2*Sqrt[121 - 11*Sqrt[22]] - 11*Sqrt[22 - 2*Sqrt[22]])*t^2 + (33*Sqrt[4 - 4*Sqrt[2/11]] + 2*Sqrt[121 - 11*Sqrt[22]] + 22*Sqrt[22 - 2*Sqrt[22]])*U^2)/(44*Sqrt[52 - 8*Sqrt[22]]) |
(t^2*(2783*U - 5115*Sqrt[2/(13 - 2*Sqrt[22])]*U + 1074*Sqrt[11/(13 - 2*Sqrt[22])]*U))/(-572*t + 88*Sqrt[22]*t) |
(-5*(12*Sqrt[11] + 121*Sqrt[(11 + Sqrt[22])/(11 - Sqrt[22])] - 11*Sqrt[(22*(11 + Sqrt[22]))/(11 - Sqrt[22])])*t*U)/396 |
((1001*Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]]*(264 + 5*Sqrt[22]))*U^2)/(528*Sqrt[26 + 4*Sqrt[22]]) |
((341*Sqrt[(2 + 2*Sqrt[2/11])*(6 + Sqrt[6])] - 264*Sqrt[6*(2 + 2*Sqrt[2/11])*(6 + Sqrt[6])] + Sqrt[(6 + Sqrt[6])*(11 + Sqrt[22])]*(198 + 33*Sqrt[6] + 5*Sqrt[22]))*t*U)/(66*(6 + Sqrt[6])*Sqrt[26 + 4*Sqrt[22]]) |
-((704 + 286*Sqrt[6] + 244*Sqrt[22] - 38*Sqrt[33] - 11*Sqrt[2*(7 - 2*Sqrt[6])*(13 + 2*Sqrt[22])])*t*U)/(2*((6 - Sqrt[6])*(11 + Sqrt[22]))^(3/2)) |
-((-4 + Sqrt[22])*Sqrt[3/(11 + Sqrt[22])]*t*U)/4 |
-((4*Sqrt[2] + Sqrt[11])*Sqrt[3/(11 + Sqrt[22])]*t*U)/2 |
-((11 + Sqrt[22])*U^2)/(11*Sqrt[2 + 2*Sqrt[2/11]]) |
-((517*Sqrt[2 + 2*Sqrt[2/11]] + (-264 + Sqrt[22])*Sqrt[11 + Sqrt[22]])*t*U)/(176*Sqrt[26 + 4*Sqrt[22]]) |
(-4*(11 + Sqrt[22])*t^2)/(11*Sqrt[2 + 2*Sqrt[2/11]]) |
((1001*Sqrt[4 + 4*Sqrt[2/11]] + 2*(132*Sqrt[2] + 5*Sqrt[11])*Sqrt[11 + Sqrt[22]])*t*U)/(528*Sqrt[26 + 4*Sqrt[22]]) |
(2112*(Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]])*t^2 + (517*Sqrt[2 + 2*Sqrt[2/11]] + (-264 + Sqrt[22])*Sqrt[11 + Sqrt[22]])*U^2)/(528*Sqrt[26 + 4*Sqrt[22]]) |
(-5*(12*Sqrt[11] + 121*Sqrt[(11 + Sqrt[22])/(11 - Sqrt[22])] - 11*Sqrt[(22*(11 + Sqrt[22]))/(11 - Sqrt[22])])*t*U)/396 |
-((578 + 109*Sqrt[22] + 160*Sqrt[26 + 4*Sqrt[22]])*t*U)/(4*Sqrt[2 + 2*Sqrt[2/11]]*(11 + Sqrt[22])^(3/2)) |