Matrix t2*K(2) in Subspace 81 with Dimension 8
(K(2) is the second-order Grosse operator)
-6*t*U |
-(Sqrt[2]*t*U) |
2*Sqrt[2]*t^2 |
t*U |
-(Sqrt[2]*t*U) |
-2*t^2 |
0 |
-2*t^2 |
-(Sqrt[2]*t*U) |
-4*t*U |
-U^2 |
0 |
0 |
0 |
4*t^2 |
0 |
2*Sqrt[2]*t^2 |
-U^2 |
(-11*t*U)/2 |
(4*t^2 + U^2)/Sqrt[2] |
0 |
-((t*U)/Sqrt[2]) |
0 |
Sqrt[2]*t*U |
t*U |
0 |
(4*t^2 + U^2)/Sqrt[2] |
-5*t*U |
-((t*U)/Sqrt[2]) |
2*t^2 |
0 |
2*t^2 |
-(Sqrt[2]*t*U) |
0 |
0 |
-((t*U)/Sqrt[2]) |
(-7*t*U)/2 |
-((4*t^2 + U^2)/Sqrt[2]) |
-U^2 |
2*Sqrt[2]*t^2 |
-2*t^2 |
0 |
-((t*U)/Sqrt[2]) |
2*t^2 |
-((4*t^2 + U^2)/Sqrt[2]) |
-4*t*U |
0 |
t*U |
0 |
4*t^2 |
0 |
0 |
-U^2 |
0 |
-5*t*U |
Sqrt[2]*t*U |
-2*t^2 |
0 |
Sqrt[2]*t*U |
2*t^2 |
2*Sqrt[2]*t^2 |
t*U |
Sqrt[2]*t*U |
-3*t*U |