Matrix t2*K(2) in Subspace 80 with Dimension 8
(K(2) is the second-order Grosse operator)
-6*t*U |
(-3*t*U)/Sqrt[2] |
4*t^2 |
0 |
Sqrt[2]*t*U |
0 |
0 |
-(t*U) |
(-3*t*U)/Sqrt[2] |
(-9*t*U)/2 |
-(U^2/Sqrt[2]) |
-U^2 |
-(t*U) |
-4*t^2 |
0 |
-((t*U)/Sqrt[2]) |
4*t^2 |
-(U^2/Sqrt[2]) |
-4*t*U |
0 |
0 |
-((t*U)/Sqrt[2]) |
-(t*U) |
0 |
0 |
-U^2 |
0 |
-6*t*U |
-4*t^2 |
t*U |
-(Sqrt[2]*t*U) |
0 |
Sqrt[2]*t*U |
-(t*U) |
0 |
-4*t^2 |
-3*t*U |
-U^2 |
0 |
0 |
0 |
-4*t^2 |
-((t*U)/Sqrt[2]) |
t*U |
-U^2 |
(-9*t*U)/2 |
(3*t*U)/Sqrt[2] |
U^2/Sqrt[2] |
0 |
0 |
-(t*U) |
-(Sqrt[2]*t*U) |
0 |
(3*t*U)/Sqrt[2] |
-3*t*U |
-4*t^2 |
-(t*U) |
-((t*U)/Sqrt[2]) |
0 |
0 |
0 |
U^2/Sqrt[2] |
-4*t^2 |
-5*t*U |