Matrix t2*K(2) in Subspace 78 with Dimension 8
(K(2) is the second-order Grosse operator)
(3*t*U)/2 |
t^2*(-2 - U^2/t^2) |
0 |
-(Sqrt[3]*t*U) |
Sqrt[6]*t^2 |
0 |
Sqrt[6]*t^2 |
(Sqrt[3]*t*U)/2 |
t^2*(-2 - U^2/t^2) |
(-3*t*U)/2 |
0 |
0 |
-(Sqrt[6]*t*U) |
-(Sqrt[3]*t*U) |
Sqrt[3/2]*t*U |
-2*Sqrt[3]*t^2 |
0 |
0 |
-2*t*U |
-(t*U) |
0 |
4*t^2 |
0 |
0 |
-(Sqrt[3]*t*U) |
0 |
-(t*U) |
(-9*t*U)/2 |
-2*Sqrt[2]*t^2 |
0 |
(4*t^2 - U^2)/Sqrt[2] |
0 |
Sqrt[6]*t^2 |
-(Sqrt[6]*t*U) |
0 |
-2*Sqrt[2]*t^2 |
-3*t*U |
2*Sqrt[2]*t*U |
t*U |
-(Sqrt[2]*t^2) |
0 |
-(Sqrt[3]*t*U) |
4*t^2 |
0 |
2*Sqrt[2]*t*U |
-5*t*U |
0 |
0 |
Sqrt[6]*t^2 |
Sqrt[3/2]*t*U |
0 |
(4*t^2 - U^2)/Sqrt[2] |
t*U |
0 |
-2*t*U |
-(Sqrt[2]*t^2) |
(Sqrt[3]*t*U)/2 |
-2*Sqrt[3]*t^2 |
0 |
0 |
-(Sqrt[2]*t^2) |
0 |
-(Sqrt[2]*t^2) |
(-15*t*U)/2 |