Matrix t2*K(2) in Subspace 75 with Dimension 8
(K(2) is the second-order Grosse operator)
(-15*t*U)/2 |
t^2*(4 + U^2/(2*t^2)) |
0 |
-(Sqrt[3]*t*U) |
-(Sqrt[6]*t*U) |
0 |
-(Sqrt[3/2]*t*U) |
(Sqrt[3]*U^2)/2 |
t^2*(4 + U^2/(2*t^2)) |
(-9*t*U)/2 |
0 |
0 |
0 |
(Sqrt[3]*t*U)/2 |
0 |
(-5*Sqrt[3]*t*U)/2 |
0 |
0 |
-7*t*U |
-4*t^2 |
0 |
-(t*U) |
0 |
0 |
-(Sqrt[3]*t*U) |
0 |
-4*t^2 |
-4*t*U |
-2*Sqrt[2]*t*U |
0 |
0 |
0 |
-(Sqrt[6]*t*U) |
0 |
0 |
-2*Sqrt[2]*t*U |
-6*t*U |
-2*Sqrt[2]*t^2 |
t*U |
2*Sqrt[2]*t^2 |
0 |
(Sqrt[3]*t*U)/2 |
-(t*U) |
0 |
-2*Sqrt[2]*t^2 |
(-9*t*U)/2 |
(-4*t^2 + U^2)/Sqrt[2] |
(3*t*U)/2 |
-(Sqrt[3/2]*t*U) |
0 |
0 |
0 |
t*U |
(-4*t^2 + U^2)/Sqrt[2] |
-7*t*U |
-2*Sqrt[2]*t^2 |
(Sqrt[3]*U^2)/2 |
(-5*Sqrt[3]*t*U)/2 |
0 |
0 |
2*Sqrt[2]*t^2 |
(3*t*U)/2 |
-2*Sqrt[2]*t^2 |
(-15*t*U)/2 |