Matrix t2*K(2) in Subspace 64 with Dimension 10
(K(2) is the second-order Grosse operator)
-5*t*U |
0 |
-(Sqrt[2]*U^2) |
2*Sqrt[2]*t*U |
0 |
0 |
-(t*U) |
Sqrt[2]*t*U |
0 |
0 |
0 |
(-9*t*U)/2 |
(3*t*U)/Sqrt[2] |
-2*Sqrt[2]*t^2 |
-((4*t^2 + U^2)/Sqrt[2]) |
(t*U)/Sqrt[2] |
4*t^2 |
0 |
Sqrt[2]*t*U |
-(t*U) |
-(Sqrt[2]*U^2) |
(3*t*U)/Sqrt[2] |
-3*t*U |
-U^2 |
0 |
t*U |
0 |
0 |
2*t*U |
Sqrt[2]*t*U |
2*Sqrt[2]*t*U |
-2*Sqrt[2]*t^2 |
-U^2 |
-9*t*U |
t*U |
-2*t^2 |
-(Sqrt[2]*t*U) |
-2*t*U |
2*t^2 |
0 |
0 |
-((4*t^2 + U^2)/Sqrt[2]) |
0 |
t*U |
-4*t*U |
-2*t^2 |
(t*U)/Sqrt[2] |
t*U |
2*t^2 |
0 |
0 |
(t*U)/Sqrt[2] |
t*U |
-2*t^2 |
-2*t^2 |
-5*t*U |
(4*t^2 + U^2)/Sqrt[2] |
0 |
t*U |
0 |
-(t*U) |
4*t^2 |
0 |
-(Sqrt[2]*t*U) |
(t*U)/Sqrt[2] |
(4*t^2 + U^2)/Sqrt[2] |
(-9*t*U)/2 |
(-3*t*U)/Sqrt[2] |
-2*Sqrt[2]*t^2 |
0 |
Sqrt[2]*t*U |
0 |
0 |
-2*t*U |
t*U |
0 |
(-3*t*U)/Sqrt[2] |
-6*t*U |
-U^2 |
Sqrt[2]*U^2 |
0 |
Sqrt[2]*t*U |
2*t*U |
2*t^2 |
2*t^2 |
t*U |
-2*Sqrt[2]*t^2 |
-U^2 |
0 |
2*Sqrt[2]*t*U |
0 |
-(t*U) |
Sqrt[2]*t*U |
0 |
0 |
0 |
0 |
Sqrt[2]*U^2 |
2*Sqrt[2]*t*U |
-4*t*U |