| -(((29 + 9*Sqrt[6])*t*U)/(6 + Sqrt[6])) | -(Sqrt[5/6]*t*U) | 0 | 0 | 0 | ((Sqrt[2] - 3*Sqrt[3])*t*U)/Sqrt[6 + Sqrt[6]] | (Sqrt[6 + Sqrt[6]]*t*U)/2 | (-4*(1 + Sqrt[6])*t^2)/Sqrt[6 + Sqrt[6]] | 0 | 0 | 0 | 0 |
| -(Sqrt[5/6]*t*U) | ((-83 + 38*Sqrt[6])*t*U)/(12 - 7*Sqrt[6]) | 0 | 0 | 0 | (Sqrt[2/(6 - Sqrt[6])] + 3*Sqrt[3/(6 - Sqrt[6])])*t*U | (-3*(Sqrt[2] - 2*Sqrt[3])*t*U)/(2*Sqrt[18 - 3*Sqrt[6]]) | (4*(-1 + Sqrt[6])*t^2)/Sqrt[6 - Sqrt[6]] | 0 | 0 | 0 | 0 |
| 0 | 0 | (-15*t*U)/2 | (3*t*U)/Sqrt[2] | 0 | -(Sqrt[3/2]*t*U) | (Sqrt[3]*t*U)/2 | 0 | 0 | (Sqrt[3]*t*U)/2 | -(Sqrt[3/2]*t*U) | -(Sqrt[3]*U^2)/2 |
| 0 | 0 | (3*t*U)/Sqrt[2] | -6*t*U | 0 | 0 | 0 | -2*Sqrt[6]*t^2 | 0 | -(Sqrt[3/2]*t*U) | -(Sqrt[3]*t*U) | -(Sqrt[3/2]*U^2) |
| 0 | 0 | 0 | 0 | -4*t*U | -U^2 | -2*Sqrt[2]*t^2 | -(Sqrt[2]*t*U) | t*U | -2*Sqrt[2]*t^2 | 0 | Sqrt[2]*t*U |
| ((Sqrt[2] - 3*Sqrt[3])*t*U)/Sqrt[6 + Sqrt[6]] | (Sqrt[2/(6 - Sqrt[6])] + 3*Sqrt[3/(6 - Sqrt[6])])*t*U | -(Sqrt[3/2]*t*U) | 0 | -U^2 | -2*t*U | (t*U)/Sqrt[2] | 0 | 0 | (-3*t*U)/Sqrt[2] | -2*t*U | 0 |
| (Sqrt[6 + Sqrt[6]]*t*U)/2 | (-3*(Sqrt[2] - 2*Sqrt[3])*t*U)/(2*Sqrt[18 - 3*Sqrt[6]]) | (Sqrt[3]*t*U)/2 | 0 | -2*Sqrt[2]*t^2 | (t*U)/Sqrt[2] | (-11*t*U)/2 | -U^2 | (4*t^2 - U^2)/Sqrt[2] | (3*t*U)/2 | -(Sqrt[2]*t*U) | -4*t^2 |
| (-4*(1 + Sqrt[6])*t^2)/Sqrt[6 + Sqrt[6]] | (4*(-1 + Sqrt[6])*t^2)/Sqrt[6 - Sqrt[6]] | 0 | -2*Sqrt[6]*t^2 | -(Sqrt[2]*t*U) | 0 | -U^2 | -4*t*U | 0 | 0 | 2*Sqrt[2]*t^2 | 0 |
| 0 | 0 | 0 | 0 | t*U | 0 | (4*t^2 - U^2)/Sqrt[2] | 0 | -7*t*U | 2*Sqrt[2]*t^2 | 0 | (t*U)/Sqrt[2] |
| 0 | 0 | (Sqrt[3]*t*U)/2 | -(Sqrt[3/2]*t*U) | -2*Sqrt[2]*t^2 | (-3*t*U)/Sqrt[2] | (3*t*U)/2 | 0 | 2*Sqrt[2]*t^2 | (-9*t*U)/2 | (5*t*U)/Sqrt[2] | t^2*(-4 + U^2/(2*t^2)) |
| 0 | 0 | -(Sqrt[3/2]*t*U) | -(Sqrt[3]*t*U) | 0 | -2*t*U | -(Sqrt[2]*t*U) | 2*Sqrt[2]*t^2 | 0 | (5*t*U)/Sqrt[2] | -4*t*U | U^2/Sqrt[2] |
| 0 | 0 | -(Sqrt[3]*U^2)/2 | -(Sqrt[3/2]*U^2) | Sqrt[2]*t*U | 0 | -4*t^2 | 0 | (t*U)/Sqrt[2] | t^2*(-4 + U^2/(2*t^2)) | U^2/Sqrt[2] | (-3*t*U)/2 |