Matrix t2*K(2) in Subspace 32 with Dimension 8
(K(2) is the second-order Grosse operator)
(-5*t*U)/2 |
U^2/2 |
-2*Sqrt[2]*t^2 |
-(t*U)/2 |
0 |
2*Sqrt[2]*t^2 |
t*U |
(t*U)/2 |
U^2/2 |
(-7*t*U)/2 |
Sqrt[2]*t*U |
0 |
0 |
(t*U)/Sqrt[2] |
U^2 |
t^2*(-4 - U^2/(2*t^2)) |
-2*Sqrt[2]*t^2 |
Sqrt[2]*t*U |
-6*t*U |
-2*Sqrt[2]*t^2 |
Sqrt[2]*t*U |
t*U |
0 |
0 |
-(t*U)/2 |
0 |
-2*Sqrt[2]*t^2 |
(-11*t*U)/2 |
-U^2 |
-((4*t^2 + U^2)/Sqrt[2]) |
0 |
(-3*t*U)/2 |
0 |
0 |
Sqrt[2]*t*U |
-U^2 |
-4*t*U |
0 |
-4*t^2 |
0 |
2*Sqrt[2]*t^2 |
(t*U)/Sqrt[2] |
t*U |
-((4*t^2 + U^2)/Sqrt[2]) |
0 |
-5*t*U |
0 |
0 |
t*U |
U^2 |
0 |
0 |
-4*t^2 |
0 |
-5*t*U |
t*U |
(t*U)/2 |
t^2*(-4 - U^2/(2*t^2)) |
0 |
(-3*t*U)/2 |
0 |
0 |
t*U |
(-9*t*U)/2 |