| (-15*t*U)/2 | -2*t*U | 0 | (-3*t*U)/2 | (-3*t*U)/Sqrt[2] | 0 | 0 | (-5*t*U)/2 | ((33*Sqrt[4 - 4*Sqrt[2/11]] + 10*Sqrt[121 - 11*Sqrt[22]] - 22*Sqrt[22 - 2*Sqrt[22]])*U^2)/(44*Sqrt[52 - 8*Sqrt[22]]) | ((1001*Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]]*(264 + 5*Sqrt[22]))*U^2)/(528*Sqrt[26 + 4*Sqrt[22]]) |
| -2*t*U | -5*t*U | 0 | t*U | -(Sqrt[2]*t*U) | 0 | 0 | -2*t*U | -((44*Sqrt[4 - 4*Sqrt[2/11]] + Sqrt[484 - 44*Sqrt[22]] + 38*Sqrt[121 - 11*Sqrt[22]])*U^2)/(88*Sqrt[52 - 8*Sqrt[22]]) | -((253*Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[22*(11 + Sqrt[22])])*U^2)/(88*Sqrt[26 + 4*Sqrt[22]]) |
| 0 | 0 | -5*t*U | (4*t^2 + U^2)/Sqrt[2] | 0 | t*U | 0 | -2*Sqrt[2]*t^2 | -((99*Sqrt[2 - 2*Sqrt[2/11]] + 3*Sqrt[242 - 22*Sqrt[22]] + 11*(Sqrt[44 - 4*Sqrt[22]] + 4*Sqrt[11 - Sqrt[22]]))*t*U)/(66*Sqrt[52 - 8*Sqrt[22]]) | ((-517*Sqrt[4 + 4*Sqrt[2/11]] + 2*(132*Sqrt[2] - Sqrt[11])*Sqrt[11 + Sqrt[22]])*t*U)/(528*Sqrt[26 + 4*Sqrt[22]]) |
| (-3*t*U)/2 | t*U | (4*t^2 + U^2)/Sqrt[2] | (-9*t*U)/2 | (-3*t*U)/Sqrt[2] | -2*Sqrt[2]*t^2 | 0 | -(t*U)/2 | (4*(-11 + Sqrt[22])*t^2)/(11*Sqrt[2 - 2*Sqrt[2/11]]) | (4*(11 + Sqrt[22])*t^2)/(11*Sqrt[2 + 2*Sqrt[2/11]]) |
| (-3*t*U)/Sqrt[2] | -(Sqrt[2]*t*U) | 0 | (-3*t*U)/Sqrt[2] | -6*t*U | -U^2 | Sqrt[2]*U^2 | -((t*U)/Sqrt[2]) | 0 | 0 |
| 0 | 0 | t*U | -2*Sqrt[2]*t^2 | -U^2 | 0 | 2*Sqrt[2]*t*U | 2*Sqrt[2]*t^2 | -((33*Sqrt[2 - 2*Sqrt[2/11]] + Sqrt[242 - 22*Sqrt[22]] + 22*Sqrt[11 - Sqrt[22]])*t*U)/(11*Sqrt[52 - 8*Sqrt[22]]) | ((-517*Sqrt[4 + 4*Sqrt[2/11]] + 2*(132*Sqrt[2] - Sqrt[11])*Sqrt[11 + Sqrt[22]])*t*U)/(264*Sqrt[26 + 4*Sqrt[22]]) |
| 0 | 0 | 0 | 0 | Sqrt[2]*U^2 | 2*Sqrt[2]*t*U | -4*t*U | 0 | -((11*Sqrt[4 - 4*Sqrt[2/11]] + 14*Sqrt[121 - 11*Sqrt[22]] - 22*Sqrt[22 - 2*Sqrt[22]])*t*U)/(22*Sqrt[52 - 8*Sqrt[22]]) | -((209*Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]]*(66 + 5*Sqrt[22]))*t*U)/(66*Sqrt[26 + 4*Sqrt[22]]) |
| (-5*t*U)/2 | -2*t*U | -2*Sqrt[2]*t^2 | -(t*U)/2 | -((t*U)/Sqrt[2]) | 2*Sqrt[2]*t^2 | 0 | (-11*t*U)/2 | ((-32*Sqrt[121 - 11*Sqrt[22]] + 176*Sqrt[22 - 2*Sqrt[22]])*t^2 + (33*Sqrt[4 - 4*Sqrt[2/11]] + 2*Sqrt[121 - 11*Sqrt[22]] + 22*Sqrt[22 - 2*Sqrt[22]])*U^2)/(44*Sqrt[52 - 8*Sqrt[22]]) | (-2112*(Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]])*t^2 + (517*Sqrt[2 + 2*Sqrt[2/11]] + (-264 + Sqrt[22])*Sqrt[11 + Sqrt[22]])*U^2)/(528*Sqrt[26 + 4*Sqrt[22]]) |
| ((33*Sqrt[4 - 4*Sqrt[2/11]] + 10*Sqrt[121 - 11*Sqrt[22]] - 22*Sqrt[22 - 2*Sqrt[22]])*U^2)/(44*Sqrt[52 - 8*Sqrt[22]]) | -((11*Sqrt[4 - 4*Sqrt[2/11]] + 10*Sqrt[121 - 11*Sqrt[22]])*U^2)/(22*Sqrt[52 - 8*Sqrt[22]]) | -((99*Sqrt[2 - 2*Sqrt[2/11]] + 3*Sqrt[242 - 22*Sqrt[22]] + 11*(Sqrt[44 - 4*Sqrt[22]] + 4*Sqrt[11 - Sqrt[22]]))*t*U)/(66*Sqrt[52 - 8*Sqrt[22]]) | ((-4 + 4*Sqrt[2/11])*t^2)/Sqrt[2 - 2*Sqrt[2/11]] | 0 | -((33*Sqrt[2 - 2*Sqrt[2/11]] + Sqrt[242 - 22*Sqrt[22]] + 22*Sqrt[11 - Sqrt[22]])*t*U)/(11*Sqrt[52 - 8*Sqrt[22]]) | -((11*Sqrt[4 - 4*Sqrt[2/11]] + 14*Sqrt[121 - 11*Sqrt[22]] - 22*Sqrt[22 - 2*Sqrt[22]])*t*U)/(22*Sqrt[52 - 8*Sqrt[22]]) | ((-32*Sqrt[121 - 11*Sqrt[22]] + 176*Sqrt[22 - 2*Sqrt[22]])*t^2 + (33*Sqrt[4 - 4*Sqrt[2/11]] + 2*Sqrt[121 - 11*Sqrt[22]] + 22*Sqrt[22 - 2*Sqrt[22]])*U^2)/(44*Sqrt[52 - 8*Sqrt[22]]) | (3*(17842*Sqrt[2] - 3370*Sqrt[11] - 4015*Sqrt[52 - 8*Sqrt[22]])*t*U)/(16*Sqrt[52 - 8*Sqrt[22]]*(-11 + Sqrt[22])^2) | -((69*Sqrt[11] - 121*Sqrt[(11 + Sqrt[22])/(11 - Sqrt[22])] + 11*Sqrt[(22*(11 + Sqrt[22]))/(11 - Sqrt[22])])*t*U)/528 |
| ((1001*Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]]*(264 + 5*Sqrt[22]))*U^2)/(528*Sqrt[26 + 4*Sqrt[22]]) | -((913*Sqrt[2 + 2*Sqrt[2/11]] + 61*Sqrt[22*(11 + Sqrt[22])])*U^2)/(528*Sqrt[26 + 4*Sqrt[22]]) | ((-517*Sqrt[4 + 4*Sqrt[2/11]] + 2*(132*Sqrt[2] - Sqrt[11])*Sqrt[11 + Sqrt[22]])*t*U)/(528*Sqrt[26 + 4*Sqrt[22]]) | ((4 + 4*Sqrt[2/11])*t^2)/Sqrt[2 + 2*Sqrt[2/11]] | 0 | ((-517*Sqrt[4 + 4*Sqrt[2/11]] + 2*(132*Sqrt[2] - Sqrt[11])*Sqrt[11 + Sqrt[22]])*t*U)/(264*Sqrt[26 + 4*Sqrt[22]]) | -((209*Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]]*(66 + 5*Sqrt[22]))*t*U)/(66*Sqrt[26 + 4*Sqrt[22]]) | (-2112*(Sqrt[2 + 2*Sqrt[2/11]] + Sqrt[11 + Sqrt[22]])*t^2 + (517*Sqrt[2 + 2*Sqrt[2/11]] + (-264 + Sqrt[22])*Sqrt[11 + Sqrt[22]])*U^2)/(528*Sqrt[26 + 4*Sqrt[22]]) | -((69*Sqrt[11] - 121*Sqrt[(11 + Sqrt[22])/(11 - Sqrt[22])] + 11*Sqrt[(22*(11 + Sqrt[22]))/(11 - Sqrt[22])])*t*U)/528 | (-9*(86 + 7*Sqrt[22] + 24*Sqrt[26 + 4*Sqrt[22]])*t*U)/(4*Sqrt[2 + 2*Sqrt[2/11]]*(11 + Sqrt[22])^(3/2)) |