Matrix t*K(1) in Subspace 97 with Dimension 14

(K(1) is the first-order Grosse operator)

0 (-I)*Sqrt[3]*U ((3 - I*Sqrt[3])*U)/Sqrt[2] -t 0 ((1 + I*Sqrt[3])*t)/2 0 0 ((3 - I*Sqrt[3])*t)/2 0 0 0 0 ((1 + I*Sqrt[3])*t)/2
(-I)*Sqrt[3]*U I*Sqrt[3]*t 0 0 0 0 0 0 0 0 0 0 0 0
((-3 - I*Sqrt[3])*U)/Sqrt[2] 0 0 0 ((-1 - I*Sqrt[3])*t)/Sqrt[2] 0 0 ((-1 - I*Sqrt[3])*t)/Sqrt[2] 0 0 0 0 ((-1 - I*Sqrt[3])*t)/Sqrt[2] 0
t 0 0 0 U ((1 + I*Sqrt[3])*t)/2 (-U - I*Sqrt[3]*U)/2 0 ((1 + I*Sqrt[3])*t)/2 ((1 - I*Sqrt[3])*t)/Sqrt[2] 0 0 0 (-I/2)*(-I + Sqrt[3])*t
0 0 ((1 - I*Sqrt[3])*t)/Sqrt[2] -U 0 U (I/2)*(I + Sqrt[3])*t ((1 - I*Sqrt[3])*t)/2 0 0 t 0 (-I/2)*(-I + Sqrt[3])*t 0
(I/2)*(I + Sqrt[3])*t 0 0 (I/2)*(I + Sqrt[3])*t -U 0 U 0 -t -(Sqrt[2]*t) 0 0 0 -t
0 0 0 (U - I*Sqrt[3]*U)/2 ((1 + I*Sqrt[3])*t)/2 -U 0 -t 0 0 (I/2)*(3*I + Sqrt[3])*t 0 ((1 - I*Sqrt[3])*t)/2 0
0 0 ((1 - I*Sqrt[3])*t)/Sqrt[2] 0 (-I/2)*(-I + Sqrt[3])*t 0 t 0 U 0 (-I/2)*(-I + Sqrt[3])*t 0 ((1 - I*Sqrt[3])*t)/2 (U + I*Sqrt[3]*U)/2
(-I/2)*(-3*I + Sqrt[3])*t 0 0 (I/2)*(I + Sqrt[3])*t 0 t 0 -U 0 0 0 0 (U - I*Sqrt[3]*U)/2 t
0 0 0 ((-1 - I*Sqrt[3])*t)/Sqrt[2] 0 Sqrt[2]*t 0 0 0 0 ((3 + I*Sqrt[3])*U)/Sqrt[2] 0 0 ((-1 - I*Sqrt[3])*t)/Sqrt[2]
0 0 0 0 -t 0 ((3 + I*Sqrt[3])*t)/2 ((1 - I*Sqrt[3])*t)/2 0 (I*(3*I + Sqrt[3])*U)/Sqrt[2] 0 ((3 + I*Sqrt[3])*U)/2 ((1 + I*Sqrt[3])*t)/2 0
0 0 0 0 0 0 0 0 0 0 (I/2)*(3*I + Sqrt[3])*U I*Sqrt[3]*t 0 0
0 0 ((1 - I*Sqrt[3])*t)/Sqrt[2] 0 ((1 - I*Sqrt[3])*t)/2 0 (-I/2)*(-I + Sqrt[3])*t (-I/2)*(-I + Sqrt[3])*t (-U - I*Sqrt[3]*U)/2 0 (I/2)*(I + Sqrt[3])*t 0 0 U
(I/2)*(I + Sqrt[3])*t 0 0 ((1 - I*Sqrt[3])*t)/2 0 t 0 (I/2)*(I + Sqrt[3])*U -t ((1 - I*Sqrt[3])*t)/Sqrt[2] 0 0 -U 0