Matrix H in Subspace 150 with Dimension 12

H is the Hamiltonian. Here we set µ=0. For grand-canonical calculations add -6µ to the main diagonal.
2*h + U ((5 + (7*I)*Sqrt[3])*t)/12 t/Sqrt[3] 0 0 -((I + Sqrt[3])*t)/2 0 0 0 (Sqrt[2]*(1 - I*Sqrt[3])*t)/3 0 ((-3*I + Sqrt[3])*t)/12
((5 - (7*I)*Sqrt[3])*t)/12 2*h + U 0 -((3*I + 7*Sqrt[3])*t)/6 (2 + (2*I)/Sqrt[3])*t 0 0 0 ((I/3)*(I + Sqrt[3])*t)/Sqrt[2] 0 -((3*I + Sqrt[3])*t)/4 0
t/Sqrt[3] 0 2*(h + U) ((3 - I*Sqrt[3])*t)/4 0 0 0 -((3*I + Sqrt[3])*t)/4 -(Sqrt[2]*(3*I + Sqrt[3])*t)/3 0 (I/2)*(3*I + Sqrt[3])*t 0
0 ((3*I - 7*Sqrt[3])*t)/6 ((3 + I*Sqrt[3])*t)/4 2*(h + U) 0 t -((-3*I + Sqrt[3])*t)/4 0 0 -(Sqrt[2]*(-3*I + Sqrt[3])*t)/3 0 (-I/2)*(-I + Sqrt[3])*t
0 (2 - (2*I)/Sqrt[3])*t 0 0 2*h 0 0 0 0 (-(1/Sqrt[2]) - (5*I)/Sqrt[6])*t 0 0
-((-I + Sqrt[3])*t)/2 0 0 t 0 2*h + U 0 -(Sqrt[3]*t) -(((I + Sqrt[3])*t)/Sqrt[2]) 0 (I/2)*(3*I + Sqrt[3])*t 0
0 0 0 -((3*I + Sqrt[3])*t)/4 0 0 2*(h + U) (t - (3*I)*Sqrt[3]*t)/4 0 0 ((-3*I + Sqrt[3])*t)/2 0
0 0 -((-3*I + Sqrt[3])*t)/4 0 0 -(Sqrt[3]*t) (t + (3*I)*Sqrt[3]*t)/4 2*(h + U) 0 0 0 0
0 ((-I/3)*(-I + Sqrt[3])*t)/Sqrt[2] -(Sqrt[2]*(-3*I + Sqrt[3])*t)/3 0 0 -(((-I + Sqrt[3])*t)/Sqrt[2]) 0 0 2*h + U (-I/6)*(-7*I + Sqrt[3])*t 0 ((3*I + Sqrt[3])*t)/(3*Sqrt[2])
(Sqrt[2]*(1 + I*Sqrt[3])*t)/3 0 0 -(Sqrt[2]*(3*I + Sqrt[3])*t)/3 (-(1/Sqrt[2]) + (5*I)/Sqrt[6])*t 0 0 0 (I/6)*(7*I + Sqrt[3])*t 2*h + U 0 0
0 -((-3*I + Sqrt[3])*t)/4 (-I/2)*(-3*I + Sqrt[3])*t 0 0 (-I/2)*(-3*I + Sqrt[3])*t ((3*I + Sqrt[3])*t)/2 0 0 0 2*h + U (t + (3*I)*Sqrt[3]*t)/4
((3*I + Sqrt[3])*t)/12 0 0 (I/2)*(I + Sqrt[3])*t 0 0 0 0 ((-3*I + Sqrt[3])*t)/(3*Sqrt[2]) 0 (t - (3*I)*Sqrt[3]*t)/4 2*h + U