Matrix H in Subspace 122 with Dimension 10
H is the Hamiltonian.
Here we set µ=0.
For grand-canonical calculations add -6µ to the main diagonal.
2*h + U |
-(t/Sqrt[3]) |
0 |
Sqrt[2]*t |
0 |
0 |
0 |
0 |
-2*Sqrt[2/3]*t |
0 |
-(t/Sqrt[3]) |
2*h + U |
0 |
0 |
Sqrt[6]*t |
-(Sqrt[3]*t) |
0 |
(4*t)/Sqrt[3] |
0 |
-(Sqrt[3]*t) |
0 |
0 |
2*(h + U) |
0 |
2*Sqrt[2]*t |
0 |
0 |
0 |
0 |
-2*t |
Sqrt[2]*t |
0 |
0 |
2*(h + U) |
-2*t |
0 |
0 |
-(Sqrt[2]*t) |
0 |
Sqrt[2]*t |
0 |
Sqrt[6]*t |
2*Sqrt[2]*t |
-2*t |
2*(h + U) |
0 |
0 |
0 |
0 |
0 |
0 |
-(Sqrt[3]*t) |
0 |
0 |
0 |
2*(h + U) |
Sqrt[2]*t |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Sqrt[2]*t |
2*(h + U) |
-(Sqrt[2]*t) |
0 |
0 |
0 |
(4*t)/Sqrt[3] |
0 |
-(Sqrt[2]*t) |
0 |
0 |
-(Sqrt[2]*t) |
2*h + U |
2*Sqrt[2/3]*t |
0 |
-2*Sqrt[2/3]*t |
0 |
0 |
0 |
0 |
0 |
0 |
2*Sqrt[2/3]*t |
2*h + U |
0 |
0 |
-(Sqrt[3]*t) |
-2*t |
Sqrt[2]*t |
0 |
0 |
0 |
0 |
0 |
2*h + U |