Matrix H in Subspace 110 with Dimension 12

H is the Hamiltonian. Here we set µ=0. For grand-canonical calculations add -6µ to the main diagonal.
U -t/2 0 0 0 ((3*I)*t)/Sqrt[2] 0 -(Sqrt[3/2]*t) ((3*I + Sqrt[3])*t)/(2*Sqrt[2]) 0 -(Sqrt[3]*t)/2 0
-t/2 U 0 0 ((-3*I + Sqrt[3])*t)/(2*Sqrt[2]) 0 (3*(I + Sqrt[3])*t)/(2*Sqrt[2]) 0 0 0 0 ((-3*I)/2)*t
0 0 3*U 0 -(Sqrt[2]*t) 0 (-I)*Sqrt[6]*t 0 0 Sqrt[2]*t 0 0
0 0 0 2*U 0 (-I)*Sqrt[6]*t 0 0 0 0 2*t 0
0 ((3*I + Sqrt[3])*t)/(2*Sqrt[2]) -(Sqrt[2]*t) 0 2*U ((3 - I*Sqrt[3])*t)/2 0 0 0 0 ((1 + I*Sqrt[3])*t)/(2*Sqrt[2]) 0
((-3*I)*t)/Sqrt[2] 0 0 I*Sqrt[6]*t ((3 + I*Sqrt[3])*t)/2 2*U 0 0 0 0 0 -(t/Sqrt[2])
0 (3*(-I + Sqrt[3])*t)/(2*Sqrt[2]) I*Sqrt[6]*t 0 0 0 2*U (-I/2)*(-I + Sqrt[3])*t (t - I*Sqrt[3]*t)/2 0 ((3 - I*Sqrt[3])*t)/(2*Sqrt[2]) 0
-(Sqrt[3/2]*t) 0 0 0 0 0 (I/2)*(I + Sqrt[3])*t 2*U 0 (-I/2)*(-I + Sqrt[3])*t 0 t/Sqrt[2]
((-3*I + Sqrt[3])*t)/(2*Sqrt[2]) 0 0 0 0 0 (t + I*Sqrt[3]*t)/2 0 2*U (I/2)*(I + Sqrt[3])*t 0 ((1 - I*Sqrt[3])*t)/(2*Sqrt[2])
0 0 Sqrt[2]*t 0 0 0 0 (I/2)*(I + Sqrt[3])*t (-I/2)*(-I + Sqrt[3])*t 2*U 0 0
-(Sqrt[3]*t)/2 0 0 2*t ((1 - I*Sqrt[3])*t)/(2*Sqrt[2]) 0 ((3 + I*Sqrt[3])*t)/(2*Sqrt[2]) 0 0 0 U (I/2)*Sqrt[3]*t
0 ((3*I)/2)*t 0 0 0 -(t/Sqrt[2]) 0 t/Sqrt[2] ((1 + I*Sqrt[3])*t)/(2*Sqrt[2]) 0 (-I/2)*Sqrt[3]*t U