Matrix H in Subspace 85 with Dimension 14

H is the Hamiltonian. Here we set µ=0. For grand-canonical calculations add -6µ to the main diagonal.
U 0 ((3*I)/4)*(I + Sqrt[3])*t 0 t/2 ((-I/2)*(-I + Sqrt[3])*t)/Sqrt[2] 0 0 (Sqrt[3]*t)/2 -((3*I + Sqrt[3])*t)/(2*Sqrt[2]) 0 0 (-3*(I + Sqrt[3])*t)/4 0
0 2*U ((-1 + (3*I)*Sqrt[3])*t)/4 0 0 (-3*t)/Sqrt[2] -2*Sqrt[2]*t 0 0 -(Sqrt[3/2]*t) 0 0 ((3*I + Sqrt[3])*t)/4 0
((-3*I)/4)*(-I + Sqrt[3])*t ((-1 - (3*I)*Sqrt[3])*t)/4 2*U ((I/2)*(5*I + Sqrt[3])*t)/Sqrt[2] 0 0 0 0 0 0 -((3*I + Sqrt[3])*t)/4 ((-3*I + Sqrt[3])*t)/4 0 -((-3*I + Sqrt[3])*t)/(2*Sqrt[2])
0 0 ((-I/2)*(-5*I + Sqrt[3])*t)/Sqrt[2] 2*U 0 0 0 0 0 0 0 0 -((3*I + Sqrt[3])*t)/(2*Sqrt[2]) 0
t/2 0 0 0 U 0 0 ((1 + I*Sqrt[3])*t)/Sqrt[2] 0 0 ((-3*I)/2)*t ((3*I + Sqrt[3])*t)/2 0 0
((I/2)*(I + Sqrt[3])*t)/Sqrt[2] (-3*t)/Sqrt[2] 0 0 0 U 0 0 0 0 (-3*(I + Sqrt[3])*t)/(2*Sqrt[2]) Sqrt[3/2]*t 0 0
0 -2*Sqrt[2]*t 0 0 0 0 3*U 0 0 0 0 0 0 0
0 0 0 0 ((1 - I*Sqrt[3])*t)/Sqrt[2] 0 0 0 -(((-3*I + Sqrt[3])*t)/Sqrt[2]) 0 0 0 0 0
(Sqrt[3]*t)/2 0 0 0 0 0 0 -(((3*I + Sqrt[3])*t)/Sqrt[2]) U 0 (I/2)*Sqrt[3]*t (t + I*Sqrt[3]*t)/2 0 Sqrt[2]*(1 - I*Sqrt[3])*t
-((-3*I + Sqrt[3])*t)/(2*Sqrt[2]) -(Sqrt[3/2]*t) 0 0 0 0 0 0 0 U ((3 + I*Sqrt[3])*t)/(2*Sqrt[2]) t/Sqrt[2] 0 0
0 0 -((-3*I + Sqrt[3])*t)/4 0 ((3*I)/2)*t (-3*(-I + Sqrt[3])*t)/(2*Sqrt[2]) 0 0 (-I/2)*Sqrt[3]*t ((3 - I*Sqrt[3])*t)/(2*Sqrt[2]) U 0 ((5 - I*Sqrt[3])*t)/4 0
0 0 ((3*I + Sqrt[3])*t)/4 0 ((-3*I + Sqrt[3])*t)/2 Sqrt[3/2]*t 0 0 (t - I*Sqrt[3]*t)/2 t/Sqrt[2] 0 2*U (I/4)*(3*I + Sqrt[3])*t 0
(-3*(-I + Sqrt[3])*t)/4 ((-3*I + Sqrt[3])*t)/4 0 -((-3*I + Sqrt[3])*t)/(2*Sqrt[2]) 0 0 0 0 0 0 ((5 + I*Sqrt[3])*t)/4 (-I/4)*(-3*I + Sqrt[3])*t 2*U ((-I/2)*(-3*I + Sqrt[3])*t)/Sqrt[2]
0 0 -((3*I + Sqrt[3])*t)/(2*Sqrt[2]) 0 0 0 0 0 Sqrt[2]*(1 + I*Sqrt[3])*t 0 0 0 ((I/2)*(3*I + Sqrt[3])*t)/Sqrt[2] 2*U