Analytical form of the eigenvectors of a 4-site Hubbard model

(see the paper: [1] Thermodynamics of a 4-site-Hubbard model by analytical diagonalization )
Some remarks:
  1. The numbers correspond to the state-numbers used in Tables I-XIII in [1].

  2. We show the unnormalized eigenvectors!
    If necessary, normalization is simply achieved by first expanding the vectors to its basis-vector form, and afterwards multiplying every Ci with its complex conjugated and to sum up. Finally one has to divide the eigenstate by the square-root of this sum. This results in lengthy formulas, not suited for presentation.

  3. The postscript files can be viewed using GhostView 3.5.8 (or higher), with appropriate reduction. If somebody wants to work with the eigenstates, please, ask for the computer-generated unedited TeX-files via e-mail.

  1. Eigenvectors for Ne=0:
    1

  2. Eigenvectors for Ne=1:
    2 3 4 5 6 7 8 9

  3. Eigenvectors for Ne=2:
    10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

  4. Eigenvectors for Ne=3, spin-up states:
    38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

  5. Eigenvectors for Ne=3, spin-down states:
    66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

  6. Eigenvectors for Ne=4, spin-up states:
    94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  7. Eigenvectors for Ne=4, states with spin-projection 0:
    111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

  8. Eigenvectors for Ne=4, spin-down states:
    147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

  9. Eigenvectors for Ne=5, spin-up states:
    164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

  10. Eigenvectors for Ne=5, spin-down states:
    192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

  11. Eigenvectors for Ne=6:
    220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

  12. Eigenvectors for Ne=7:
    248 249 250 251 252 253 254 255

  13. Eigenvectors for Ne=8:
    256


(counter out of work) page requests since Jan 31 2001