

Fachrichtung Mathematik

Institut fr Algebra

Prof. Stefan E. Schmidt und S. Reichard

Lineare Algebra und Analytische Geometrie I (LAAG I)

WS2013/14

9. Übungsblatt für die Übungen vom 16.12. bis 20.12.2013

Hausaufgaben bitte bis zum 8.1.2014 12.00 Uhr in die Briefkästen im Willersbau, C-Flügel, Erdgeschoss, einwerfen. Bitte Namen, Matrikelnummer, und Übungsgruppe angeben.

Ü1. Sei $M = \{Apfel, Birne, Zitrone, Banane\}, und <math>\alpha, \beta \in \mathbb{N}^M$ seien gegeben durch

x	Apfel	Birne	Zitrone	Banane
αx	5	3	2	0
βx	0	6	1	4

- (a) Bestimme $\alpha + \beta$, $\alpha \vee \beta$ und $\alpha \wedge \beta$.
- (b) Gib supp α und supp β an.
- (c) Begründe für beliebiges $\eta \in \mathbb{N}^M$ die Formel

$$\eta = \sum_{x \in M} \eta x \cdot \delta_x^M$$

und stelle α sowie β in dieser Form dar.

Ü2. Sei $\mathbb{N}_{add} = (\mathbb{N}, +, 0)$ das additive Monoid der natürlichen Zahlen; bezeichne $a \wedge b$ das Minimum von $a, b \in \mathbb{N}$.

Für $T_3 := (\underline{3}, +^3, 0)$ mit $x +^3 y := (x + y) \wedge 2$ für alle $x, y \in \underline{3}$ und $\varphi : \mathbb{N} \to \underline{3}$, $x \mapsto x \wedge 2$ zeige:

- (a) $\varphi 0 = 0$
- (b) $\varphi(x+y) = \varphi x +^3 \varphi y$ für alle $x, y \in \mathbb{N}$.

Folgere hieraus, dass T_3 Monoid ist.

Wir nennen T_3 das "0-1-viele-Monoid". Warum?

- Ü3. Ist P Menge, so sind $\mathbb{A}_P := (2^P, \cup, \varnothing)$ und $\mathbb{A}_P^* := (2^P, \cap, P)$ natürlich geordnete kommutative Monoide.
 - (a) Bestimme die natürliche Ordnung zunächst von \mathbb{A}_P und dann von \mathbb{A}_P^* .
 - (b) Finde eine bijektive Abbildung $\varphi: 2^P \to 2^P$ derart, dass gilt:
 - $\varphi(X \cup Y) = \varphi X \cap \varphi Y$ für alle $X, Y \in 2^P$
 - $\varphi\varnothing=P$

Ü4. Sei $P := \{\text{Dime, Quarter, Dollar}\}$ und sei $\gamma : P \to \mathbb{N}$ gegeben durch

$$\begin{array}{c|ccc} x & \text{Dime} & \text{Quarter} & \text{Dollar} \\ \hline \gamma x & 10 & 25 & 100 \\ \end{array}$$

(a) Bestimme

$$f_{\gamma}: \mathbb{N}^P \to \mathbb{N}$$
$$\alpha \mapsto \sum_{p \in P} \alpha p \cdot \gamma p$$

für $\alpha, \beta \in \mathbb{N}^P$ mit

$$\begin{array}{c|cccc} x & \text{Dime} & \text{Quarter} & \text{Dollar} \\ \hline \alpha x & 2 & 3 & 3 \\ \beta x & 7 & 5 & 2 \\ \end{array}$$

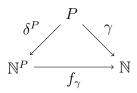
und zeige $(\alpha, \beta) \in \ker(f_{\gamma})$.

(b) Begründe: $f_{\gamma}(0_P) = 0$ und

$$f_{\gamma}(\alpha + \beta) = f_{\gamma}(\alpha) + f_{\gamma}(\beta)$$

für alle $\alpha, \beta \in \mathbb{N}^P$.

(c) Überprüfe: $f_{\gamma} \circ \delta^{P} = \gamma$, d.h. das folgende Diagramm kommutiert:



H5. "Die Uhr als Monoid"

Sei $C_{12} := (\underline{12}, +_{12}, 0)$ mit

$$x +_{12} y := \begin{cases} x + y & \text{falls } x + y < 12\\ x + y - 12 & \text{sonst} \end{cases}$$

- (a) Bestimme zu $x \in \underline{12}$ das Inverse in C_{12} .
- (b) Sind $x, y, z \in \underline{12}$ und $t := x + y + z \in \mathbb{N}$, so begründe:

$$(x +_{12} y) +_{12} z =$$

$$\begin{cases} t & \text{falls } t < 12 \\ t - 12 & \text{falls } 12 \le t < 24 \\ t - 24 & \text{sonst.} \end{cases}$$

Folgere hieraus das Assoziativgesetz für $+_{12}$.

H6. Verwende die "Linearkombinationsabbildung" f_{γ} aus Ü4.

- (a) Bestimme $f_{\gamma}^{-1}\{x\}$ für jedes $x \in \{0, 1, 10, 100\}$.
- (b) Gib $[\alpha] \ker(f_{\gamma})$ für $\alpha = \delta_{\text{Dime}}^P + \delta_{\text{Quarter}}^P + \delta_{\text{Dollar}}^P$ an.
- H7. "Cayley-Darstellung von Monoiden"

Sei $\mathbb{M} = (M, +, 0)$ kommutatives Monoid und sei $\operatorname{Map} M := (M^M, \circ, \operatorname{id}_M)$ das (kontravariante) volle Abbildungsmonoid zu M.

Dann sei $+: M \times M \to M$ als Daten-Matrix aufgefasst mit $r_+: M \to M^M$, $x \mapsto +(x,\cdot)$ als zugehöriger row map, d.h.

$$(r_+x)t = +(x,t) = x+t$$

für alle $x, t \in M$.

Zeige:

- (a) r_+ ist injektiv.
- (b) $r_{+}0 = id_{M}$
- (c) $r_+(x+y) = r_+x \circ r_+y$ für alle $x, y \in M$.

Zusatzfrage: Benötigen wir, dass M kommutativ ist?