PROGRAMMIERUNG

ÜBUNG 12: HOARE-KALKÜL

Eric Kunze
eric.kunze@tu-dresden.de

INHALT

- 1. Funktionale Programmierung
 - 1.1 Einführung in Haskell: Listen
 - 1.2 Algebraische Datentypen
 - 1.3 Funktionen höherer Ordnung
 - 1.4 Typpolymorphie & Unifikation
 - 1.5 Beweis von Programmeigenschaften
 - 1.6 λ-Kalkül
- 2. Logikprogrammierung
- 3. Implementierung einer imperativen Programmiersprache
 - 3.1 Implementierung von C₀
 - 3.2 Implementierung von C₁
- 4. Verifikation von Programmeigenschaften
- 5. H₀ ein einfacher Kern von Haskell

Hoare-Kalkül

► Beweis / Verifikation von Programmeigenschaften

- ► Beweis / Verifikation von Programmeigenschaften
- ► Verifikationsformeln der Form (P)(A)(Q)
 - ► *P* und *Q* sind Zusicherungen (prädikatenlogische Ausdrücke)
 - ▶ P heißt Vorbedingung, Q heißt Nachbedingung
 - ► Beschreibung der Veränderung von Zusicherungen

- Beweis / Verifikation von Programmeigenschaften
- ► Verifikationsformeln der Form $\{P\}$ \blacktriangle $\{Q\}$
 - ► *P* und *Q* sind Zusicherungen (prädikatenlogische Ausdrücke)
 - ▶ P heißt Vorbedingung, Q heißt Nachbedingung
 - Beschreibung der Veränderung von Zusicherungen
 - ► **Bedeutung**: Wenn die Variablenwerte vor Ausführung von **A** die Zusicherung *P* erfüllen und **A** terminiert, dann erfüllen die Variablen nach Ausführung von **A** die Zusicherung *Q*

```
{x70} x=x+5; {x75}
```

- Beweis / Verifikation von Programmeigenschaften
- ► Verifikationsformeln der Form {*P*} **A** {*Q*}
 - ► *P* und *Q* sind Zusicherungen (prädikatenlogische Ausdrücke)
 - ▶ P heißt Vorbedingung, Q heißt Nachbedingung
 - Beschreibung der Veränderung von Zusicherungen
 - ► **Bedeutung**: Wenn die Variablenwerte vor Ausführung von **A** die Zusicherung *P* erfüllen und **A** terminiert, dann erfüllen die Variablen nach Ausführung von **A** die Zusicherung *Q*
- ► Aufstellen eines Beweisbaumes mit zur Verfügung stehenden Regeln

HOARE-KALKÜL — REGELN

- ► Zuweisungsaxiom
- ► Sequenzregel
- CompRegel
- Iterationsregel
- ► (erste und zweite) Alternativregel
- ► Konsequenzregeln
 - stärkere Vorbedingung
 - schwächere Nachbedingung

SCHLEIFENINVARIANTE

Für die Iterationsregel benötigen wir die Schleifeninvariante SI. In den meisten unserer Fälle ist diese von der Form $SI = A \wedge B$, wobei

- ► A den Zusammenhang zwischen Zählvariable und Akkumulationsvariablen beschreibt. Führe dazu einige Iterationen der Schleife durch und leite daraus einen Zusammenhang her.
- ▶ B die abgeschwächte Schleifenbedingung ist. Dabei nehmen wir die letztmögliche Variablenbelegung, für die die Schleifenbedingung π noch wahr ist und führen den Schleifenrumpf noch einmal darauf aus ($\rightarrow \pi'$).