

- From where are specific characteristic aspects/elements perceived?
- What are the most important places for perceiving aspects?
 What is the ratio between a place as a vantage point and a place as a subject of photography itself?

- technique will work best for characteristic elements which can be visually perceived, and for areas with high data density
 - (> 1000 photographs matching search criteria)
 - For tags referring to objects that can be **visually perceived**, the largest cluster is typically where the actual object **is located**
 - Surrounding smaller clusters are photographs of this aspect/object
- The technique will **connect low clusters** with the single densest **high cluster** and symbolize results

It is possible to select data from tag cluster data (previous step)

..more accurate selection by carefully, manually selecting data...

Choose Selection > Select by Attributes -

Search Criteria Example - Davis Centre Library Waterloo:
LOWER("NAME") LIKE '% daviscentre %' OR LOWER("NAME") LIKE '% davis centre %'
OR LOWER("NAME") LIKE '% davis %' OR "Tags" LIKE '%;dc;%' OR "Tags" LIKE
'%;daviscentre;%' OR ("Tags" LIKE '%;%library%;%' AND "Tags" LIKE '%;%davis%;%')

Note: **blank spaces** before and after Field-"Name" tag selection - % = wild-cards

Case Sensitive (Lower...)

Goal: selecting all tags related to the analyzed aspect/element

- Open Table View and limit View to Selected Data:
- Scroll to Column [URL] and copy some of the URLs to web browser to check, whether the selected photos actually include the

Davis Centre Library Waterloo or related aspects

 Revise Selection Script to exclude any obvious, false entries

- Export selected features to Shapefile and Cluster Photo Locations by using Cluster Photo Locations-Tool:
- Choose Cluster Distance based on Map Scale and Display/Paper Size

- Select and export largest Clusterto Shapefile #1:
 - HImP = 1 > Largest Cluster
- Select and export all other Clusters to Shapefile #2
 - HImP = 0 > All other Clusters
- Add Field FID_Con to Shapefile #2 (Short Integer)
 Load Tool "Spider"

(Script > Right-Click > Properties > **Source** must link to ...\01_TOOLS\Scripts\Spider.py)

Choose FID as Field center & FID_CON as Field Border

- Spatial Join back number of photos to Lines:
 - Open **Spatial Join Tool** (Analysis Tools > Overlay)
 Target Features = Sightlines from previous Step
 - - Join Features = Clustered Photo Locations (Without Center)
 - Use existing Layers for Symbolization:
 Layer "SpiderLines" > Properties > Source >
 - Set Data Source...
 - Recalculate Symbol Classification or ..manually set Break Values

Run a **Hot Spot Analysis with Rendering** for Photo Location Clusters (see Workshop Part 2)

Edit Label Expression for percentage Display:

```
Function FindLabel ( [Join_Count] )
if [Join_Count] > 5 then
FindLabel = "<FNT name='Arial' size='" & 8+round([Join_Count]/
(34/100),0)*1.3 & "'>" & round([Join_Count]/ (34/100),0) & "%" & "</FNT>"
end if
End Function
'(5 = Minimum Cluster Size for Labels, 34 = Sum of photographs (100%), *1.3 = Modify Size of Text)
```