Privacy-preserving Blockchain-based Systems for
Car Sharing Leveraging Zero-Knowledge Protocols

Ivan Gudymenko*, Asadullah Khalid", Hira Siddiqui’, Mujtaba Idrees’, Sebastian ClauB*, André Luckow?,
Manuel Bolsinger® and Daniel Miehle}
*T-Systems Multimedia Solutions GmbH {Ivan.Gudymenko, Sebastian.Clauss} @t-systems.com,
THochschule Mittweida, University of Applied Sciences { Akhalid} @hs-mittweida.de,
Technische Universitit Dresden {Mujtaba.Idrees, Hira.Siddiqui} @mailbox.tu-dresden.de,
SBMW Group {Manuel.Bolsinger, Daniel.Miehle} @bmw.de, {Andre.Luckow}@bmwgroup.com

Abstract—Blockchain-based systems open new opportunities
for the IT business and society if designed and implemented
properly. One of the essential challenges on their way to produc-
tion readiness are severe privacy concerns and hence stringent
compliance regulations. In this paper, we investigate how different
privacy-preserving techniques leveraging zero-knowledge proof
protocols and anonymous credentials can be used to tackle this
issue on the example of a car sharing use case. Our approach con-
siders a blockchain ecosystem enabling different parties including
governmental authorities and automobile industry partners to
cooperate ensuring end user privacy protection. The implemented
proof-of-concept is leveraging Ethereum ZoKrates and Indy
technologies respectively. This project is a joint initiative of
T-Systems Multimedia Solutions GmbH and BMW Group.

Index Terms—anonymous credentials, zero knowledge proofs,
Hyperledger Indy, blockchains, Ethereum ZoKrates, privacy
protection

I. INTRODUCTION

New mobility services such as car sharing are rapidly
gaining popularity, especially in large cities. For example,
ShareNow is a car sharing company belonging to BMW Group
and Daimler. As of 2019, ShareNow had 4.2 million registered
customers, 0.5 to 1 million new customers every year, and
more than 100.000 car rentals per day. Within the registration
process, every new customer has to undergo an online video
identification during which the validity of the driving license
is actively checked. Depending on the country regulations, this
must be repeated every 36 months. During this process, the
photos of the national ID card and the driving license are trans-
mitted. In this context, quite often more information pieces are
disclosed than would be necessary for the registration process
itself, since selective disclosure of the respective attributes is
not possible in the classic scenario. Furthermore, customers are
asked to confirm the validity of their driving license on each
rental. Therefore, the classic privacy compliant processing of
the received data pieces incurs organizational, technical and
hence financial overhead. The situation gets even more com-
plex when different car sharing companies cooperate to form
a mobility ecosystem and possibly a network of value-added
services. In order to tackle these aspects, BMW Group and T-
Systems Multimedia Solutions GmbH conducted a technical
evaluation of the newest privacy-preserving technologies in the
context of consortial, blockchain-based car sharing systems.
The focus was made on the application of selective attribute

disclosure to the car sharing domain, which is expected to
provide for privacy-friendly process management.

II. PRIVACY PRESERVING DRIVING LICENSE DISCLOSURE:
A GENERAL SYSTEM SETUP

The generic car sharing use case is defined in Figure 1.

Transport 3. Car rental request

Authority
Issuer (I)

i
=

Rental car
pool

Verifier (V)

7=~

End user
(e.g. a smart phone)

1. Issue driving

license Prover (P)
credential

. BMW Group
2. Issue membership| yembership
status status provider

ﬂ Issuer (1)

_

[Blockchain Layer J

Fig. 1. The generic car sharing use case considered in the paper.

The main actors considered in the target use case essentially
represent the core entities of a digital credential system,
namely an issuer, a prover and a verifier, see Table I.

TABLE I
MAIN ACTORS

Actor Description

Issuer (I) Issues and revokes the credentials (transport authority KBA,
and BMW Group)

Prover (P) The entity being issued the credentials and proving them
(represents the end user)

Verifier (V) Checks the validity of the prover’s credentials (service

provider)

In our system, two type of issuers are considered: the gov-
ernmental transport authority (Kraftfahrt-Bundesamt, KBA)
and BMW Group. The former (KBA) issues digital credentials
certifying the validity of a driving license in form of well-
defined attributes (e.g. driving license class, etc.). BMW Group
issues an attribute certifying the user’s membership in the
BMW Group mobility program which enables the usage of
certain services such as car sharing from the BMW Group
mobility pool. Prior to the issuing phase, an end user has to be
authenticated in some way. For example, conventional means

of end user authentication including electronic identification
based on government identity card could be leveraged. This
process is, however, out of scope of this paper. Having identi-
fied and authenticated the end user and checked the existence
of a driving license record, the transport authority (KBA)
issues a credential set consisting of well-defined attributes.
For the sake of example, assume the following categories of
attributes within the driving license context: a driving license
class (A, B or C) and the current driving experience (below
3 years, 3 to 5 years and over 5 years). Similarly, the BMW
Group membership attributes could be something like partner
status i.e. silver, golden, and platinum. The attribute categories
are summarized in Table II. The issued attributes can then be
selectively disclosed to different service providers according
to the certain service consumption requirements (e.g. in form
of a defined schema). For example, a person having a class
B driving license being in its possession for the time period
between 3 to 5 years and having a BMW Group membership
status "gold" would maintain the following attributes set:
A:[B,3 < E <5,gold).

This aforementioned use case has been validated and im-
plemented leveraging Ethereum-based ZoKrates approach (see
Section III) and Hyperledger Indy (see Section IV).

TABLE 11
ATTRIBUTE CATEGORIES

Category Options

A, B, C
E<3,3<EXL5 E>5
silver, gold, platinum

Driving license class
Driving experience
BMW Group membership status

III. SYSTEM IMPLEMENTATION LEVERAGING ZOKRATES
FRAMEWORK

In order to implement the target car sharing use case in the
Ethereum context, a custom attribute scheme was devised and
the zero-knowledge functionality of ZoKrates framework was
leveraged.

A. The generic issuing process

The issuing process adheres to the following simple proce-
dure.

1) The prover P generates a secret which will be a random
number 7 (private input for further proofs)

2) The prover applies a secure hash function to r and
delivers it to the issuer: P — I : h(r)

3) Having previously identified the issuer, the issuer [
can now label the delivered value h(r) as a attribute
certifying, for example, the driving license class (A,
B or C), sign it and finally write the result to the
blockchain. The outcome of the issuance phase, there-
fore, is a signed attribute having the following structure
A = Signissuerkey (class = B, h(r)). The Issuer’s
wallet address under which the attribute has been issued

into the chain can be considered a signature in this
context (in a loose sense).

4) The process is repeated for further attributes. Finally,
the prover maintains a private array of secure random
numbers R : {r} that were used to generate the at-
tribute together with the corresponding public attributes

A {A}.

B. Attributes verification and service consumption

In order to consume a certain service such as to hire a
car from the BMW Group car pool, an end user (acting as
a prover) has to convince the car terminal (a verifier) that
he is in possession of certain attributes. For example driving
license class B, driving experience between 3 to 5 years and
has a BMW Group membership status gold. To do this, three
corresponding attributes are revealed to the verifier (a car
terminal) and proved, namely:

o Ay = Signissueriey (Class = B, h(r1))

L4 A2 = Signlssuerl(ey (3 g B g 57 h(/’ﬂ2))

o Az = Signissueriey (BMW status = gold, h(rs))

The proving process is essentially reduced to proving the
knowledge of the corresponding hash preimage encoded into
the proof and known only to the prover.

C. ZoKrates Framework

ZoKrates [1] framework is a toolbox for zkSNARKS on
Ethereum. It is used to generate zero knowledge proofs
and enables verifiable computation. ZoKrates itself basically
constitutes of off-chain computation steps.

Initialization phase. The first phase of our system is the
initialization phase which comprises of 5 main steps:

1) Program compilation. Implemented program that proves
the knowledge of our problem is compiled to ZoKrates
arithmetic circuit to generate a witness.

2) Trusted setup. Generate a trusted setup! for the compiled
arithmetic circuit. As a result of this trusted setup, a
proving key and a verification key are generated. The
proving key is sent to the prover.

3) Verifier contract generation. Generate a verifier smart
contract, the proof is basically sent to the verifier con-
tract for proof verification.

4) Deployment. The generated verification smart contract
is deployed on the blockchain, to enable on-chain proof
verification.

5) Issuer Registration. Finally this registers the issuers,
that in our use case are BMW Group and KBA, on the
blockchain (via a smart contract).

Attributes Issuance. The second phase of our system is the
selection of characteristics/user data and use it to request mem-
bership issuance from respective authorities i.e. BMW Group

'In our prototype it is assumed to be executed by a trusted setup entity
which safely deletes the auxiliary material after system setup. More on security
assumptions of ZoKrates initialization process can be found here [2].

or KBA. The process has been described in Section III-A.
For actual ZKP-relevant steps, the respective smart contract
deployed during the initialization phase is called.

Attributes Disclosure Finally, in order to enable service
consumption, a user selectively discloses the attributes against
a car terminal to rent a vehicle.

1) Attributes validity proof in zero knowledge. First the car
sharing service checks if the user is the real owner of
the credentials presented in the form of the ZKP proof.

2) Verify driver’s attributes The car sharing services com-
pares the driver’s attributes with the previously defined
required attribute schema (e.g. driving license class,
experience and BMW Group partner status).

D. ZoKrates-based Prototype Description

5. Publish
signed
credentials
Attributes
Contract

3. Issuer

Registration
4. Issue

credentials
for service

User
6. Prover-Entity Ny

uses ZoKrates
to generate zk-proof
using prover key

7. Presents zk-proof

Blockchain
Network

1. Secure-Entity
initiates
trusted setup

Verfier
Contract
2. ZoKrates generates verifier smart contract
using key i

Prover & Verification
Key are generated

Fig. 2. Ethereum/ZoKrates-based system overview

Figure 2 represents the relevant system entities (secure
trusted entity, issuer, and prover) together with an on-chain
verifier smart contract which technically depict the use case.

1) Secure entity. This entity is run by the admin to:

o compile the arithmetic circuit (the implemented
program) to generate a preimage.

« execute the trusted setup phase, using the preimage,
in order to generate the prover and verification key.

« share the prover key with the end user (prover).

« generate the verifier smart contract using the verifi-
cation key.

The Secure entity runs only once at system initialization.

2) Truffle entity. Truffle is used to deploy the verifier
smart contract for future verification sessions in zero-
knowledge (done once per defined attribute schema).

3) Prover entity. This entity is run by the end user (prover)
to generate the proof (executed on each verification
session).

4) Verifier smart contract. The verifier smart contract con-
vinces the verifier entity (a car terminal) to authorize the
requested service consumption (called on each verifica-
tion session).

IV. SYSTEM IMPLEMENTATION LEVERAGING INDY
FRAMEWORK

Selective attribute disclosure required by the target use case
can be implemented leveraging privacy-preserving identity
management approaches which inherently support correlation-
resistant attribute revelation functionality. In the blockchain
context, this challenge has been efficiently addressed in Hy-
perledger Indy project [3] [4]. In traditional centralized identity
management systems, the defined central organization is the
root of trust and holds user’s data whereas Indy puts end users
in charge of their data using blockchain as an underlying
trust provider. Various organizations participate in private
blockchain networks and interact with each other to securely
prove their identity and attribute claims in zero knowledge.
The Indy ecosystem inherently provides for basic building
blocks to implement the target use case in a generic way [5].

A. Indy-based System Setup

In order to implement the target use case, the endemic build-
ing blocks of Indy have been leveraged. The governmental au-
thorities including the transport authority, which issues driving
license credentials, form a governmental blockchain network.
Automobile industry partners, service providers, and car shar-
ing companies maintain their own blockchain network. Both
blockchain networks are special-purpose blockchains targeted
to distributed identity management (leveraging Plenum proto-
col [6]). The advantage of having domain specific blockchain
networks, such as the ones for governmental purposes and
service providers, lies in the fact that they can be de-
signed based on potentially rather diverging assumptions, trust
paradigms, etc. (e.g. different governance models, etc.). Each
service provider can translate the respective business logic
requirements into specific attribute schemes which generically
define the attributes to be proven by the verifier for service
consumption (e.g. renting a car). In our prototype, the obtained
credentials are locally maintained on the user side. Figure 3
summarizes the high-level architecture of the designed Indy-
based prototype.

B. Indy Framework: a short overview

Hyperledger Indy specifies the terminology and design pat-
terns for decentralized identity along with an implementation
of these concepts which act as a building block for many
applications of decentralized identity management including
the car sharing use case presented in this paper.
Decentralized Identifiers: For every entity at least one De-
centralized Identifier (DID) is created in the Hyperledger Indy
ecosystem. There are 2 types of DIDs: (1) pairwise DIDs,
which are not published on the ledger and used for 1:1
interaction of entities, making them correlation-resistant; and
(2) public DIDs, which are published on the ledger and are
accessible from any entity making them decentralized and
resolvable via blockchain.

Roles: Every entity in Indy has a role which defines its
capabilities in the network. Indy follows a hierarchical model
of roles [7] and the ones relevant to our workflow are:

o Trustee: The trustee role represents the governing bodies
in the network. The organizations with this role can (1)
add or remove trustees and steward (2) allow an entity
the get the role of a trust anchor.

o Steward: The steward role allows the organizations to run
their nodes in the blockchain network and can grant an
entity the role of trust anchor.

o Trust anchor: The trust anchor role is assigned to the
member organizations of the consortium who issue cre-
dentials to the users.

Transactions: Indy ledger has various transaction types
specifying the interaction on blockchain network. The trans-
actions relevant to our workflow are NYM, SCHEMA and
CLAIM_DEEF. The details can be found here [8].

C. Indy Technology Stack

The technology stack for this solution uses Indy SDK,
Plenum-based blockchains [9] deployed on docker containers
and Java-based Indy clients.

D. System Design and workflow

This solution enables a user to get access to a car from the
BMW Group mobility pool by selectively disclosing only the
relevant pieces of information (in form of attributes) pertaining
to the driving license and BMW Group membership status.
As already mentioned above, the core workflow involves two
blockchain networks, namely the governmental one (including
the transport authority) and the one of automobile industry
partners (including BMW Group). In our Indy-based system
design, six interacting parties can be defined: Governmen-
tal Network Trustee, Automobile Industry Partners Network
Trustee, Transport Authority (KBA) Trust Anchor, BMW
Group Trust Anchor, a Car Terminal and an End User.

Involved Blockchain Networks

e Governmental Network essentially represents a consor-
tium of governmental authorities. The trust anchors of all
government agencies are onboarded on this network by
the governmental trustee including the transport authority
(KBA) trust anchor.

o Automobile Association Network: This network is a con-
sortium for automobile companies. The trust anchors of
all automobile agencies are onboarded on this network
by the automobile trustee. BMW Group trust anchor is a
part of this network.

Interacting parties

e Governmental Network Trustee. The governmental trustee
is the highest role in the Governmental Network and is
responsible for onboarding stewards and trust anchors
into the network. Its public DID is published to the ledger
at network creation.

o Automobile Association Trustee. The automobile asso-
ciation trustee is the highest role in the automobile
association network and is responsible for onboarding
stewards and trust anchors into the network. Its public
DID is published to ledger at network creation.

e KBA Trust Anchor. KBA trust anchor issues driving
license attributes to end users. It has to be initially
onboarded onto the governmental network by requesting
the trust anchor role from the respective trustee. After
being granted the role, it publishes the schema and claim
definition describing the generic structure of a driving
license to be issued in future. Upon a user request
to obtain driving license attributes, pairwise DIDs are
created (see Section IV-B) and KBA issues a driving
license to the user which in turn gets stored in a user’s
wallet.

e BMW Group Trust Anchor. BMW Group trust anchor
issues the membership status to its users. It first onboards
onto the automobile association network by requesting
the trustee for trust anchor role. After being granted
the role, it publishes the schema and claim definition to
generate membership attributes. On membership issuance
request, pairwise DIDs are created similarly to the case
above and BMW Group issues a membership certificate
to the user, which is also stored in the user’s wallet.

o A car terminal. The car acts as a verifier for the proof sub-
mitted by user. It first announces the required attributes to
be revealed/proved in zero-knowledge in order to obtain
the service. In the current case, a proof should be of com-
posite nature and include the statements about the status
of driving license and BMW Group membership status
attributes. The user app then reads the proof requirements,
constructs a proof response using its credentials and sends
it to the car. The car then verifies the submitted proof
information by firstly consulting the respective revoca-
tion registries for the provided credentials. Revocation
information can be fetched lazily enabling off-chain and
offline verification. The implementation of revocation
mechanism is out of scope of this paper. Secondly,
integrity checks on the user’s proof are performed using
the public keys of credential issuers (KBA trust anchor
and BMW Group trust anchor) and the corresponding
claim definitions published on the ledgers.

o User. The end user gets credentials from both KBA and
BMW Group to get access to the car. It contacts KBA
and gets a driving license credential. Similarly, it gets
a membership credential from BMW Group. Once the
client has both the credentials, it reads the proof details
that car has announced, constructs a composite proof
response according to the requirements and presents it to
the car. After verification, access will be granted or denied
based on whether the proof verification was successful or
not.

V. ATTRIBUTES REVOCATION

Should certain attributes lose their validity, they have to be
revoked. The revocation process has to be efficient and trans-
parent for every participant in the system. The Ethereum-based
prototype with ZoKrates and the Indy one handle revocation
differently. In the implemented Ethereum/ZoKrates prototype,
revocation is performed by the issuer in that the respective

1. Get membership credential
.S @ BMW Trust Anchor
S

/
3. Submit proof . Automobile Network
5
CAR ’0/; /e Government Network
(Verifier) R
Se
s

KBA Trust Anchor

Customer Client Wallet

A

2. Get license credential

Fig. 3. A high-level overview of Indy-based system design

attributes are labeled as "revoked" and published on the
blockchain. Whereas in Indy, cryptographic accumulators [10]
are used to handle revocation and published on the blockchain
as revocation registeries. A cryptographic accumulator is a
one way membership function enabling membership checks
without revealing the individual identities in this set.

VI. RESULTS AND DISCUSSION

Ethereum/ZoKrates and Indy both support the privacy-
preserving car sharing ecosystem use case. Their methodolo-
gies, however, are widely different. Indy has strict hierarchical
roles and the capabilities of every entity in the ecosystem
is determined by the role they have. In Ethereum/ZoKrates,
hierarchy is simpler and capabilities of different entities can
be determined through dedicated smart contracts and are not
a part of the ZoKrates ecosystem itself.

In our ZoKrates-based implementation, a simple protocol
was devised leveraging the proof of knowledge of hash preim-
age encoded in the issued credential. The credential structure
and the proof logic is in turn encoded into the respective smart
contract which acts as an on-chain verifier. This approach
is rather inflexible in comparison to Indy, since it does not
directly provide for arbitrary composite proofs based on the
already issued attributes. In contrast, Indy-based design allows
for this and the obtained credentials can be flexibly reused to
dynamically meet the verification schema.

Indy gives clients more flexibility to create composite proofs
using credentials acquired from issuers possibly residing on an
arbitrary number of different blockchain networks. In classic
Ethereum-based systems leveraging ZoKrates, all actors need
to be present on the same blockchain network for system to
work.

Similarly, Indy supports off-chain proof verification and re-
vocation checks (based on lazily fetched information) whereas
in ZoKrates verification must be done on-chain using smart
contracts. A comparison of the underlying construction of both
technologies is given in Table III.

A. Performance assessment

Conceptually the interaction of the entities can be roughly
divided into 3 categories: onboarding, credential/proof genera-
tion and proof verification. We benchmarked these workflows

TABLE III
ZOKRATES VS. INDY: A CONCEPTUAL EVALUATION

Criteria ZoKrates Indy

Blockchain tech. Ethereum Indy Plenum

ZKP engine SNARKS Idemix (as in Sovrin)
Credentials mgmt Off-chain Off-chain (Wallet)
Proof Verification = Smart Contract, On-chain Claims Ver., Off-chain
Proof generation Off-chain Off-chain

Proof arguments Defined by a Smart Contract ~ Schema and Claims

Identity mgmt. Ethereum Addr. or Custom DID, inherent impl.

on Intel Core i7-4600U CPU @2.10GHz machine with 8GB
RAM, Windows 10 (Enterprise Edition) for both Indy and
ZoKTrates, see Figure 4.

Indy Vs Zokrates Performance Analysis
30.00

Bindy ©Zokrates
26.63

25.00

23.54

20,00

15.00

time in seconds

10.00

3.00

0.58
[—

0.14

1 2 3
Onborading Proof Generation Proof Verification

Fig. 4. A comparative performance analysis of system implementation using
Ethereum/ZoKrates and Indy

Onboarding takes nearly the same time for both technolo-
gies. Proof/credential generation in Indy is roughly 60x faster
and proof verification is 5x faster compared to ZoKrates. Proof
verification is the most recurring operation in the system. In
Indy, it is computed off-chain hence its positive impact on per-
formance would be significant in (near) real time applications.
Therefore, Indy-based implementations are inherently more
efficient and performant if similar use cases are considered.

VII. RELATED WORK

Hyperledger Indy and ZoKrates both provide alternatives to
manage information without revealing private attributes which
is beneficial for government and corporate trusts. Various
projects have been proposed and developed in this domain.
In [11], a privacy-preserving KYC scheme leveraging zero
knowledge proofs in Ethereum context for financial services
is presented. The approach is similar to our implementation
except that it handles revocation differently. The paper presents
two use cases based on this model, namely a KYC-compliant
exchange and a KYC-compliant token. The authors of [12]
provide a solution for a classic use case of transparent and
secure electronic voting system. The approach presented in

this paper also involves a protocol developed on blockchain
technology, except that it offers anonymity of voter transac-
tions by leveraging an anonymous payment scheme called
Zcash which relies on zk-SNARKSs used to generate zero-
knowledge proofs. The authors of [13] present an Indy-based
approach to streamline the operations of states of British
Columbia and Ontario by managing decentralized identities
and trusted credentials. The motivation for this lies in the
fact that the Canadian government spends an estimated CAD
10 Billion a year for unnecessary operations because of red
tape. In [14], privacy-preserving grid balancing is presented
based on weather forecasts leveraging Indy ecosystem to
predict energy production and then to offer incentives to
electric vehicle users to charge when energy is in surplus.
Zero knowledge proofs can also be beneficial in the so-called
cash transfer programs (CTPs) for humanitarian aids at times
of natural disasters. Privacy and data-protection of the most
vulnerable is an essential requirement of CTPs, whereas not
many of the humanitarian information management systems
incorporate privacy-by-design. Due to this, Hyperledger Indy
was proposed as a solution in [15].

VIII. CONCLUSION AND FUTURE WORK

Blockchain-based systems are rapidly gaining attention.
However, one of the main challenges on their way to produc-
tion readiness are severe privacy concerns and hence stringent
compliance regulations. In this paper, two different proof-of-
concept systems have been presented demonstrating how the
privacy issues in such context can be tackled. As a target
use case, a car sharing domain within a blockchain-based
ecosystem incorporating governmental authorities such as a
transport authority (Kraftfahrt-Bundesamt/KBA) and automo-
bile industry partners was chosen. In order to enforce the
privacy requirements, the cryptographic techniques based on
anonymous credentials and zero-knowledge proofs were used.
The proof-of-concepts are implemented leveraging two tech-
nologies, namely Ethereum with ZoKrates and Hyperledger
Indy. The first solution based on ZoKrates uses zkSnarks for
zero-knowledge proof generation and Ethereum blockchain for
proof verification. In ZoKrates, the private information which
needs to be proved in zero-knowledge is specified in a domain
specific language that generates an arithmetic circuit of a
proof. It provides an independent environment for off-chain
proof generation. Furthermore, it also generates a verification
smart contract which is then deployed on the blockchain for
on-chain proof verification. The smart contract functionality
can be utilized by various applications and it is interoperable
with other blockchains based on Ethereum.

The second solution is based on Hyperledger Indy, a
dedicated ecosystem for decentralized identity management
leveraging anonymous credentials. Indy replicates real-world
organizational structure and holistically addresses challenges
imposed by decentralized cooperation and privacy-preserving
distributed identity management.

For example, governmental organizations and automobile
industry partners do not have share a single blockchain net-

work and can maintain their own ecosystems with possibly
different trust assumptions and governance models. Moreover,
private data pieces/private attributes reside on the end user side
with the end user controlling the granularity of data revelation
on per case basis. Indy provides efficient revocation strategies
using cryptographic accumulators and the possibility to lazily
fetch cryptographic material for verification. As a result, a user
and a car could perform the validation process locally by e.g.
communicating via Bluetooth or Near Field Communication
(NFC) by this decoupling the on-chain processes for which
a stable Internet connection is required from the time-critical
ones.

Summing up, Indy-based solutions are likely to be more
flexible and efficient in a wide variety of use cases not requir-
ing compatibility with the classic blockchain technologies such
as Ethereum. In case the latter is important (e.g. Ethereum-
based ecosystem already exists), the suggested approach lever-
aging ZoKrates can be applied.

ACKNOWLEDGEMENT

We thank our T-Systems colleagues Tobias Wohland, Niko-
laos Saklampanakis and Alexander Ebeling who provided
insight and expertise that greatly assisted the research.

REFERENCES

[1] Zokrates. a toolbox for zksnarks on ethereum. [Online]. Available:
https://zokrates.github.io/

[2] B.-S. et al., “Succinct non-interactive zero knowledge for a von neu-
mann architecture,” in Proceedings of the 23rd USENIX Conference
on Security Symposium, ser. SEC’14. Berkeley, CA, USA: USENIX
Association, 2014, pp. 781-796.

[3] The official sdk for hyperledger indy. [Online]. Available: https:
//github.com/hyperledger/indy-sdk

[4] An introduction to hyperledger. [Online]. Avail-
able: https://www.hyperledger.org/wp-content/uploads/2018/08/HL_
Whitepaper_IntroductiontoHyperledger.pdf

[5] Hyperledger indy node documentation. [Online]. Available: https:
//hyperledger-indy.readthedocs.io/en/latest/index.html

[6] Introduction to hyperledger business blockchain
design philosophy and consensus. [Online]. Available:
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_
Arch_WG_Paper_1_Consensus.pdf

[71 Hyperledger indy network roles and permissions. [Online].
Available: https://github.com/hyperledger/indy-node/blob/master/docs/
source/auth_rules.md

[8] Hyperledger indy transaction types. [Online]. Available: https://github.
com/hyperledger/indy-node/blob/master/docs/source/requests.md

[9] Plenum byzantine fault tolerant protocol. [Online]. Available: https:
/github.com/hyperledger/indy-plenum

[10] Hyperledger indy credential revocation using cryptographic
accumulators. [Online]. Available: https://github.com/hyperledger/
indy-sdk/blob/master/docs/concepts/revocation/cred-revocation.md

[11] S. T. Alex Biryukov, Dmitry Khovratovich, “Privacy-preserving kyc on
ethereum,” in ERCIM-Blockchain 2018, 2018.

[12] P. Tarasov and H. Tewari. (2017, 10) Internet voting using zcash.
[Online]. Available: https://eprint.iacr.org/2017/585.pdf

[13] Bc aims to cut government red tape with hyperledger indy.
[Online]. Available: https://www.hyperledger.org/resources/publications/
orgbook-case-study

[14] A privacy-preserving approach to grid balancing using scheduled electric
vehicle charging. [Online]. Available: https://aaltodoc.aalto.fi/bitstream/
handle/123456789/40877/master_Antonino_Antonio_2019.pdf

[15] Self-sovereign identities for scaling up cash
transfer projects. [Online]. Available: https://www.
121.global/wp-content/uploads/2019/09/Stevens_TUDELFT _
Self-sovereign-identities-for-scaling-up-cash-transfer-projects.pdf

