
Credentials as a Service
Providing Self Sovereign Identity as a Cloud Service Using Trusted Execution Environments

Hira Siddiqui∗, Mujtaba Idrees∗, Ivan Gudymenko∗, Do Le Quoc†, Christof Fetzer†
∗T-Systems Multimedia Solutions GmbH {Hira.Siddiqui, Mujtaba.Idrees, Ivan.Gudymenko }@t-systems.com,

†Scontain {Do, Christof.Fetzer}@scontain.com

Abstract—With increasing digitization, more and more people
use their identification credentials for accessing online services;
which increases concern for data privacy. To ensure user’s pri-
vacy, alternate credential management schemes must be adopted.
Self-Sovereign Identity (SSI) is a form of credential management
where users are in charge of their credentials. Privacy-critical
data is stored only at the user’s end and they can choose to
do selective disclosure of minimal required information to access
services. Currently, SSI solutions are not being widely adopted
by service providers and the ecosystem is fragmented. One of
the reasons for the lack of adoption is the need for maintaining
private infrastructure for credential issuance, as critical user
information is to be handled during credential issuance. To cater
to this, we present a solution that enables the service providers
to run their credential issuers on public cloud - a so-called
Credentials as a Service (CaaS). CaaS issuers run inside Trusted
Execution Environments (TEE) enabling credential issuers to
ensure user’s privacy while enjoying the flexibility of the pay-
per-use cloud model. CaaS can pave the way for making SSI
credentials ubiquitous in identity management solutions.

Index Terms—self sovereign identity, verifiable credentials,
zero knowledge proofs, hyperledger indy, trusted execution en-
vironments, blockchain, privacy protection, SCONE

I. INTRODUCTION

Nowadays, data privacy is an increasing concern. People
share significant pieces of Personally Identifiable Information
(PII) online like name, credit card numbers etc. Misuse of
such data is a privacy concern and can lead to adverse
consequences. Corporate giants like Facebook, PayPal, Gov-
ernment organizations etc. store data of millions of people and
analyze them in privacy-invasive manner. Similarly, centralized
systems for credentials verification like WES [1] also store
sensitive identity information. In the past, there have been
data breaches of Facebook [2], Yahoo [3] and Equifax [4]
which affected millions of users. Hence, storage of privacy-
critical data by trustworthy corporates makes them a honeypot
for malicious entities. To protect the misuse of user’s data
either due to malicious intent or gross negligence, a law
was created in Europe known as General Data Protection
Regulation (GDPR) [5]. This law imposes large fines on
companies in case of a data breach, putting huge responsibility
on such corporates. An alternative way to sharing information
and providing services online is by creating a Self Sovereign
Identity ecosystem in which the services:

• do not store any personal identifiable information
• can verify that the data provided to them is correct
• can verify that the data is issued by a valid authority

In an SSI based system, the user is in control of his/her
identity data and can choose to disclose parts of their iden-

tity credentials (only as much as required). Proof that data
is provided by a valid authority without disclosing entire
credential is also possible. Moreover, the credential issuing
authorities and the services which need identity data from
customers both can choose not to store user’s data, while
ensuring complete functionality of the system. Therefore, there
is lesser responsibility on authorities and services for customer
data handling and management.
Prior work has been done in the domain of SSI [6] [7] [8] [9]
but the focus has never been on the requirements of service
provider. The SSI ecosystem cannot evolve until enough
service providers adopt SSI ecosystem, thus creating a chain of
trust. The goal of this research is to bridge this gap by catering
to the requirements of both the service providers and users.
If such a system is created as a cloud service, it would lead
to increased adoption due to the traditional cloud benefits like
pay-per-use, relief from maintaining in-house infrastructure,
on-demand scaling etc.
In a classic SSI ecosystem like Hyperledger Indy [10], the
authorities acting as issuers of credentials maintain on-premise
infrastructure, as outsourcing user’s data and its processing to
a public cloud provider would make the data vulnerable to
various cloud related attacks for example root admin attack.
This problem can be mitigated by creating a cloud-based sys-
tem which provides holistic data protection (at rest, in transit
and in runtime) along with confidential execution guarantees.
To provide such protection, Trusted Execution Environments
(TEE) [11] were used. TEEs enable the process execution
inside a sealed area in CPU, thus providing hardware protec-
tion to the execution. TEEs provide confidentiality guarantees
against malicious root admin etc. Therefore, if the authorities
issue credentials using a cloud service over TEEs, they have
security guarantees that confidentiality and integrity of client’s
data is preserved.
In this work an SSI solution named as Credentials as a
Service (CaaS) is created which provides a credential issuance
microservice running inside public cloud over Intel SGX,
which is currently the most mature TEE implementation in
the confidential computing paradigm. Hyperledger Indy [10]
cloud agent has been made to run inside TEEs over Intel
SGX using a code wrapper SCONE [12] [13]. CaaS can
save legal (e.g. GDPR compliance) costs for cloud providers
by alleviating the need to store sensitive data. Moreover,
managing TEE hardware can open new business opportunities
for cloud providers by allowing them to run applications with
sensitive data e.g. medical records in their systems and overall
enhancing the trust in public cloud.



II. CREDENTIALS AS A SERVICE: A GENERAL SYSTEM
SETUP

To show how the system works, an application was created
which shows a university graduate who needs to apply for a
job. The job application requires verifiable information from
Identity Card and University Transcript. User will first receive
his/her ID card credential and Transcript credential from the
respective authorities and then add the required information in
the job application.
The main actors considered in the target use case essentially
represent the core entities of a digital credential system,
namely an issuer, a holder and a verifier.

Government and University will run their CaaS issuers in
the public cloud inside TEEs to provide credentials to the
users. A user will first take the credentials from issuers and
then present them to the verifier. Figure 1. shows the high
level application flow.

Fig. 1. The credential issuance and proving process in the example application

The identity card credential is issued by the government
issuer and follows the schema [Name, Age, Gender, Place of
Birth]. The transcript credential is issued by the university
issuer and follows the schema [Name, Degree, Grade, Enroll-
ment Date].
Now, in traditional setting, user would get credentials and
present them to the employer in whole, disclosing essentially
in an all-or-nothing fashion. However, in this scenario, user
would selectively disclose the minimum required information
as shown in Table I. The employer would not know extraneous

TABLE I
SELECTIVE AND ZKP-BASED DISCLOSURE OF ATTRIBUTES

Attribute Disclosure Type

Name Plaintext
Degree Plaintext
Proof that age >= 18 Zero Knowledge Proof
Proof that grade <= 3 Zero Knowledge Proof

information from shared credentials i.e. gender, place of birth,
enrollment date. The employer would also not know the exact
value of attributes presented as zero knowledge proofs [14] i.e.
age and grade, it would just know that they meet the required
criteria.

A. Design Goals
The goal of this work is to ensure that organizations can

issue verifiable credentials to their clients in a confidential

and integrity-protected manner even when they run their issuer
services on third-party cloud providers. In the entire lifecycle
of this system, it must be ensured that:

• The client’s information must not be visible to unintended
parties

• The client’s credential information must only be stored
at the client’s side e.g. in user’s app

• The issuer’s functionality cannot be changed i.e. the code
and configuration’s confidentiality and operating system
files’s integrity is ensured.

• Proof presentation can be done in a peer-to-peer fashion
i.e. the client must be able to create composite proofs and
do selective disclosure with zero knowledge functionality
to third-parties (verifiers) utilizing the previously acquired
credentials without involving issuers

• The availability and non-repudiation of public informa-
tion of the issuers is ensured

B. Threat Model and Protection Mechanisms

Our threat model comprises of an omnipotent adversary that
can attack everywhere: on the cloud as the root admin, on
the memory and OS libraries, on the code and config files
of issuers and on the data over the network. The only threat
surface we do not consider is when the data is in user’s wallet.
We protect against the threats as follows:

• HTTPS connections are used to protect the data packets
over the network

• Access to the memory or execution information of issuer
is restricted by using secure enclaves

• Changes in code, configuration and dynamic libraries
is inhibited using SCONE’s file system protection file
(fspf) [15]. All the metadata required for checking the
consistency of files is stored in fspf and changes to
selected files and libraries can be tracked.

• The secrets necessary to decrypt the files are supplied to
the issuer after verification that they have correct software
stack (MrEnclave [16]).

III. SYSTEM IMPLEMENTATION LEVERAGING
HYPERLEDGER INDY AND SCONE TRUSTED EXECUTION

ENVIRONMENTS

A. Technical Background

Trusted Execution Environments (TEE) and Secure
Container Environment (SCONE)
Trusted Execution Environments (TEE) is an environment for
secure execution on untrusted systems in a confidential and
integrity preserving manner. The wrapper framework of TEE
that is used in this system is Secure Containers Environment
(SCONE) [12] [13]. SCONE was chosen because it allows to
build and run secure containers on top of Intel SGX hard-
ware without having to re-write applications. The applications
only needs to be recompiled with SCONE cross compilers
to run it in a containerized environment. Moreover, it also
offers features like transparent attestation of system state, file
system protection [15] i.e. protection of data-at-rest and secrets
management.



SSI Framework and Hyperledger Indy
SSI frameworks provide the functionality to issue, verify
and store decentralized verifiable credentials. In CaaS, we
use Hyperledger Indy [10] as the SSI framework. Indy
facilitates creation of Decentralized Identifiers (DIDs) and
Verifiable Credentials supporting selective disclosure and
Zero Knowledge Proofs (ZKP). It supports a consortium of
member organizations and uses Plenum blockchain as the
distributed ledger. However, in CaaS, we use public Ethereum
blockchain instead of plenum.

B. System Components

Figure 2 shows the system components used in CaaS. The
system can easily be extended to include as many issuers,
verifiers and users as needed.
Issuers: Issuers are microservices setup by organizations that

Fig. 2. System components

issue verifiable credentials. These issuer services run as secure
containers (enclaves) on public cloud.
Verifiers: Verifiers are services that verify user’s credentials.
They are able to check whether the provided proof is correct
and is issued by a valid issuer using underlying SSI framework
libraries. In CaaS, the verifier does not need to contact the is-
suer for proof verification (see design goals II-A). It only needs
public issuer and credential information from blockchain. This
approach has two benefits:

• Load on issuers is reduced by eliminating the requests
made to issuer during verification

• Blockchain provides high availability due to its inherent
design utilizing redundancy, so instead of asking infor-
mation from issuer, it can be fetched from blockchain.

Holder: Holders are entities who wish to leverage self-
sovereign identity. The holders get their credentials from
issuers, create their proofs using selective disclosure and zero
knowledge proofs and provide these proofs to the verifier.
Their personal credential information is only stored in their
own wallet.
Distributed Trusted Registry: Hyperledger Indy uses plenum
consortial blockchain. However, one of the core novelties of
CaaS is that it serves as a public SSI ecosystem. To do

this, CaaS was developed to use Ethereum smart contract
as a publicly-accessible distributed trusted registry that stores
issuer’s public information and the credential schema they are
issuing. Ethereum was chosen because of its mature smart
contract platform and large public adoption. In this way, CaaS
converts a consortial SSI ecosystem to a public one.
Trusted Execution Platform Components: In our solution,
we used SCONE Configuration and Attestation Service (CAS)
and SCONE Local Attestation Service (LAS) as the trusted
platform components. These services (also running as enclaves
on third-party cloud provider) are provided by SCONE that
perform local and remote attestation. Together they attest that
the enclaves registered with them are running in a valid Intel
SGX hardware and with the correct system state (MrEnclave)
i.e. they ensure integrity and authenticity of enclaves. Any
enclave can be registered with SCONE CAS by using a
"session". A session holds secrets. SCONE CAS does safe-
keeping of these secrets and only allow access by legitimate
enclaves.
Our issuer enclaves are also registered with SCONE CAS
using sessions. When SCONE CAS verifies that the issuers are
running inside enclaves with correct system state (MrEnclave),
only then it lets them access the secrets.

C. Workflow

At first, our system needs to setup in a trusted manner
and after that it can securely issue and verify credentials in a
trustless setup.
Trusted Setup

1) CAS and LAS Setup: Firstly, SCONE CAS and
SCONE LAS should be setup on the cloud machine.

2) Smart Contract Setup: A public smart contract is
published. It stores the public issuer information and the
details of the credentials that the issuers will provide.

3) Issuer Bootstrap: An issuer needs to be bootstrapped
before it can start issuing credentials.

Fig. 3. Issuer Bootstrapping

Issuer bootstrap has seven steps as shown in (Figure 3)
and explained below:



a) File System Encryption: Issuer’s organization would
encrypt all of the issuer code, configuration files and the
wallet files on its trusted machine before transmitting it
to untrusted cloud provider. SCONE FSPF [15] mecha-
nism is used for encryption.
b) Dynamic Libraries Authentication: Our issuer com-
pilation includes dynamic libraries. These libraries are
added at runtime and therefore can be used by an
attacker to inject unwanted functionality. Therefore,
to protect from such an attack, dynamic libraries are
authenticated using SCONE FSPF before starting the
issuer.
c) Uploading of Session on CAS: Issuer organization
first attests SCONE CAS using Intel Attestation Service
(IAS) [17] [18]. Issuers are then registered with the CAS
by uploading their session. The session contains secrets
like file system decryption keys, hashes to authenticate
dynamic libraries and TLS certificate for setting up
secure endpoint. The secrets can only be accessed by
a service with same MrEnclave as specified in the
uploaded session.
d) Copying Encrypted Folders: All the encrypted files,
folders and configurations necessary for the functioning
of issuer are then uploaded to the cloud provider’s
machine.
Trustless Setup
e) Enclave Initialization: At this point, the enclave
needs to be initialized on the public cloud in a trustless
manner. Issuer’s session is invoked on CAS. If the
machine or container invoking the session has the same
MrEnclave as in the uploaded session, CAS would give
access to the session’s secrets and run the issuer with
the specified environment i.e. keys to decrypt the folders
and TLS certificates to create secure connections with
clients.
f) Creation of credential information and storage in
SSI wallet: The issuer then creates a schema and cre-
dential definition with the required attributes by calling
the SSI framework functions. It stores this information
in its local SSI wallet.
g) Publishing of credential and issuer public in-
formation on blockchain: Once the schema and cre-
dential definition are created, the issuer publishes the
information on the blockchain through smart contract.
All the information required to securely connect and
independently verify an issuer gets published including
the session name, schema and credential definitions.
The session name is published so that the clients know
which session’s public certificate is needed to securely
connect to the required issuer. The schema and credential
information are needed by the verifier to verify the
proofs submitted by client. The schema is also needed
by the clients to know which credential is being offered
by the issuer. At this point, the issuer becomes ready to
issue credentials and waits for incoming client requests
over the secure TLS channel.

Fig. 4. Credentials acquisition and verification workflow

Clients can now use CaaS to get credentials and prove
identity to verifiers. In this paper, we assume that the client
(student) and the issuer(s) know each other already. However,
to authenticate a client, a pairwise DID between client and
issuer is created which is used to issue credentials. The
generation of this pairwise DID can be done after manually
verifying the student or national ID card or it can be a result of
another SSI verification where the issuer would first verify the
ID card before issuing credentials. To get the credential, client
follows the steps shown in Figure 4 and explained below:

1) Get data from smart contract: Issuers advertise their
names publicly which clients use to get the corre-
sponding issuer and their credential public information
from blockchain. Technically, the issuer authentication
can also be done via centralized data stores. However,
blockchains provide additional value as in terms of
high availability, decentralization and immutability of
the information.

2) SCONE CAS Attestation: Client would attest SCONE
CAS which would ensure client that CAS is a non-
malicious service running on a valid Intel SGX hardware
with the expected software state.

3) Get TLS certificate from SCONE CAS: The client
uses the session name that it got from blockchain to
get issuer’s TLS certificate from CAS. Client uses this
certificate to create a secure connection with the issuer.

4) Get credential from issuer: The client sends its infor-
mation to the issuer over the secure TLS connection.
The issuer creates a credential for the client and sends
it back over the same secure channel. The client then
stores it in its wallet.

5) Verifier requests proof from client: The verifier service
is setup before the proof verification takes place.
The verifier sends a proof request to the client which
contains (1) attributes needed as plaintext i.e. selective
disclosure (2) predicates that need to be satisfied i.e.
zero knowledge proofs.

6) Client sends proof to verifier: Client uses the cre-
dentials already stored in its wallet to create the proof
adhering to the proof requirements. This proof is then
sent to the verifier over a secure communication channel.

7) Proof verification: After receiving the proof, verifier



checks the credentials used to construct the proof. It
fetches the corresponding issuer and credentials infor-
mation from the blockchain. The verifier checks:

• The proof is mathematically correct and all the
predicates are satisfied

• It has been constructed from credentials that were
required by the verifier

• The credentials that were used to create the proof
were issued by a valid and trusted issuer

These checks are performed using the Hyperledger Indy
SDK functions and then by verifying information pub-
lished on the blockchain.

IV. EVALUATION

A. Evaluation Hardware and Configuration

CaaS was evaluated on an Intel SGX-enabled server (SGX
version 1), a Xeon E3-1280v6 @ 3.90 GHz. The Enclave Page
Cache (EPC) was 128MB [19]. The server had ubuntu 18.04.3
LTS as its operating system, a RAM of 62 GB and a total of
8 processors. JVM Heap memory was fixed to 256 MB in all
tests. Our SCONE HEAP was set to 8GB. Only one instance
of issuer(implemented in Java) was tested.

B. Evaluation Modes

It was essential to know the performance impacts of running
issuers with secure enclaves v/s without the enclaves. There-
fore, the performance of issuer was evaluated in three modes:
1) SCONE Hardware: Hardware mode is when the issuer is
running inside a secure enclave.
2) SCONE Simulation: Simulation mode is used to run
SCONE containers on machines that do not have Intel SGX
support. Simulation mode is used for debugging or develop-
ment.
3) Native: Native execution is when the issuer is running as
a native java based microservice without the environment of
SCONE/Intel SGX.

C. Evaluation Results

Sequential and parallel requests were sent in bulk to the
issuer and results were evaluated in terms of latency, CPU
usage and JVM Heap usage.
1) Experiment: Sequential execution with hardware mode
In hardware mode, a sequential request took 0.13s to create
a credential on average, CPU utilization was <=0.1% and the
JVM heap usage was 20-30%.
2) Experiment: Comparison of increasing parallel requests
in hardware mode
The issuer running in hardware mode could not handle more
than 300 parallel requests. The average latency of issuer
starts from 0.13s for a single request and reaches to 64.48
seconds in 300 parallel requests as shown in Figure 5. With
more than 300 parallel requests, the issuer stops responding.
The bottleneck was JVM heap usage. CPU consumption
remains under 1% for all workloads. However, JVM heap
consumption, reaches to 80% on 300 parallel requests as

Fig. 5. Issuer latency in hardware mode

shown in Figure 6 at which point it stops responding.

3) Experiment: Comparison of executions in hardware,
simulation and native mode
The previous experiment was repeated with issuers running in
different modes and it was found that native executions have
the best performance. Simulation mode has performance close
to native, and hardware mode has the worst performance.
While hardware mode can only process 300 parallel requests,
simulation mode is capable of handling 15000 parallel requests
and native mode is capable of handling 30000 parallel requests
as shown in Figure 6 Once again JVM heap was found to

Fig. 6. Issuer latency in different modes

Fig. 7. Issuer heap usage in different modes

be the bottleneck and in each of the three modes, whenever
JVM heap reaches 80%, the issuer stopped responding. This
trend can be seen in Figure 7. The cpu usage remains low in all
cases. In the future, issuers can be implemented in lightweight
languages like Rust to improve performance. On average, an
overhead of 3.3 times was observed when running the issuer
in hardware mode and 1.16 times in simulation mode.
4) Experiment: Enclave Bootup Time
On average, enclave bootup time was 5 minutes and 47
seconds. Currently, we evaluate our prototype at the SGXv1,
which provides slow boot up time. However, with SGXv2,
the boot up time would be improved significantly. The new
Intel Icelake hardware also don’t have the limitation about the



EPC size [19] which would also improve performance during
runtime.

V. RELATED WORK

Improving the adoption of fragmented SSI landscape
has been a long-standing research objective. Some initial
works [20] describe that non-usage of established access
management protocols are one of the reasons for minimal SSI
adoption by service providers. Therefore, integration architec-
tures were proposed that allows service providers to utilize
SSI functionality in their web applications whilst using their
existing authentication protocols. However, these architecture
did not cover the aspect of credentials issuance in the cloud
setting whilst maintaining privacy of client’s data.
Furthering this research to improve the SSI adoption, PRIME
Core [21], an anonymous credentials systems for web appli-
cations based on IDEMix [22] has also been developed. It
discusses that the SSI systems have become like a chicken
and egg problem. Users cannot use SSI because there are
not enough SSI-based service providers and service providers
do not adopt the SSI infrastructure as the landscape is very
fragmented for now. Therefore, an easy to use web based
anonymous credentials systems can help in boosting SSI
adoption. However, in PRIME Core, the credential issuance
happens within the trusted boundary of the organization to
preserve the privacy of user’s data and does not allow gener-
ating credentials on a third-party cloud provider. Our solution
CaaS, however, allows this.
Before SSI based credentials, a lot of research was done
in field of blockchain based credentials [23] [24] where
blockchain was used as a root of trust for verifying whether
the credentials are valid or not. These solutions naturally did
not support functionalities of selective disclosure and zero
knowledge proofs like SSI. Therefore, SSI is now the next
step forward in user-centric identity. Furthering this arena of
research, another aspect in SSI adoption being discussed in
recent works [6] is forming the technical backbone of SSI
ecosystems over blockchain. Such works explain that SSI
can now be made ubiquitous by laying its foundations on
top of blockchain as many of its properties coincide with
the desired properties of self-sovereign identity for example
availability, immutability, distributed data control and trans-
parency. Such research contributions gives credibility to CaaS
where Blockchain has been utilized to provide an available,
transparent and distributed registry for storing the information
related to issuers and the credentials they offer.
Similarly, SSI-based use cases are also being explored in
the industry to find practical steps on adopting the SSI
ecosystem, furthering the importance of CaaS. T-Systems
Multimedia Solutions GmbH and BMW explored the use
case of car-mobility services based on SSI credentials [25]
using Hyperledger Indy and Zokrates. It discusses a proof-
of-concept application built for car-sharing where users take
SSI credentials from organizations and later present them to a
verifier using selective disclosure to get access to a car from
mobility pool. This paper did not focus on the requirements of

provider and the possibility of creating credentials in a third-
party cloud provider whilst maintaining privacy. However, it
served as a precursor to our research in CaaS.

VI. FUTURE WORK

In the future, CaaS can be shifted to new generation SSI
platform known as Hyperledger Aries [26] [27], hardware can
be shifted to Intel SGXv2 for improved performance and other
TEE offerings like Graphene [28] can be explored. Currently,
we have designed CaaS in a manner that it can easily scale
with the increasing number of requests i.e. we can spawn new
issuers and the attestation will be performed automatically
using CAS [29]. However, detailed scalability tests need to
be done.

VII. CONCLUSION

Self Sovereign Identity (SSI) is a modern approach to
provide and consume services which require certain aspects
of personal information to be processed in order to ensure
service provision. It allows users to be in control of their
identity attributes (such as age, name etc.) by giving them the
freedom to allow what information to reveal and to whom.
Multiple SSI solutions are available but the ecosystem is
fragmented and the SSI adoption is low, largely because
the needs of service providers and credential issuers in SSI
domain have been ignored. There exists a need for a system
that makes it convenient for all parties to adopt SSI based
credentials. One way to do this is by enabling providers to run
their issuers on third-party cloud machines while providing
them guarantees that their client’s privacy will be preserved
using Trusted Execution Environments (TEEs).
This paper presents a neoteric solution to identity known as
Credentials as a Service (CaaS). CaaS is an SSI ecosystem
where credential issuers can create SSI credentials for their
users on a third-party cloud machine using secure enclaves
while service providers (verifiers) can verify proofs created
from these SSI credentials. The system provides guarantees
that the user’s data would not be compromised in the
presence of omnipotent adversary as the credential issuance
is happening inside trusted execution environments and user’s
data is only stored at the user’s end. To find the required
issuers, clients use an Ethereum smart contract that serves
as a distributed trusted registry. CaaS is an empowering
system that can have huge social impacts by aiding in
creating workflows that inhibit discrimination and can pave
the way to a society based on the principles of equality. It
is built on top of Hyperledger Indy SDK, SCONE Trusted
Execution Environment and Ethereum Blockchain. Using
CaaS, organizations with minimal resources can become a
part of self-sovereign identity ecosystem and applications can
be created based on existing SSI credentials. The issuers used
in our system can issue around 460 verifiable credentials
per minute and can serve up to 300 concurrent credential
issuance requests. However, there is no free lunch. Our TEE
based issuers are up to 3 times slower than non-TEE issuers.



REFERENCES

[1] WESTeam. World education services. [Online]. Available: https:
//www.wes.org/

[2] E. Boldyreva, “Cambridge analytica: Ethics and online manipulation
with decision-making process,” 12 2018, pp. 91–102.

[3] L. J. Trautman and P. C. Ormerod. Corporate director’s and officer’s
cybersecurity standard of care: the yahoo data breach. [Online].
Available: https://ssrn.com/abstract=2883607

[4] J. Thomas, “A case study analysis of the equifax data breach 1 a case
study analysis of the equifax data breach,” 12 2019.

[5] D. Savić and M. Veinović, “Challenges of general data protection
regulation (gdpr),” 01 2018, pp. 23–30.

[6] M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In search of
self-sovereign identity leveraging blockchain technology,” IEEE Access,
vol. 7, pp. 103 059–103 079, 2019.

[7] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel, “A survey on
essential components of a self-sovereign identity.” [Online]. Available:
https://arxiv.org/pdf/1807.06346.pdf

[8] D. van Bokkem, R. Hageman, G. Koning, T. L. Nguyen, and N. Zarin,
“Self-sovereign identity solutions: The necessity of blockchain technol-
ogy,” 04 2019.

[9] A. Tobin and D. Reed, “The inevitable rise of self-sovereign
identity.” [Online]. Available: https://sovrin.org/wp-content/uploads/
2018/03/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf

[10] H. I. Community.
[11] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution

environment: What it is, and what it is not.” [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7345265

[12] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
linux containers with intel SGX,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16).
Savannah, GA: USENIX Association, 2016, pp. 689–703. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/arnautov

[13] SconeTeam. Scone. [Online]. Available: https://sconedocs.github.io/
[14] J. Hasan, “Overview andapplications of zero knowledge proof (zkp),”

vol. 8, p. 5, 10 2019.
[15] S. Team. Scone file shield. [Online]. Available: https://sconedocs.

github.io/SCONE_Fileshield/
[16] ——. Scone. [Online]. Available: https://sconedocs.github.io/

MrEnclave/
[17] V. Costan and S. Devadas, “Intel sgx explained,” IACR Cryptol. ePrint

Arch., vol. 2016, p. 86, 2016.
[18] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and M. Vij,

“Integrating remote attestation with transport layer security,” 01 2018.
[19] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni,

P. Felber, and D. Hagimont, “Everything you should know about
intel sgx performance on virtualized systems,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 3, no. 1, Mar. 2019. [Online]. Available:
https://doi.org/10.1145/3322205.3311076

[20] A. Grüner, A. Mühle, and C. Meinel, “An integration architecture to
enable service providers for self-sovereign identity,” in 2019 IEEE
18th International Symposium on Network Computing and Applications
(NCA), 2019, pp. 1–5.

[21] B. Kellermann and I. Scholz, “Anonymous credentials in web
applications – a child’s play with the prime core.” [On-
line]. Available: http://dud.inf.tu-dresden.de/~ben/kellermann_scholz09_
anonymous_credentials_in_web_applications.pdf

[22] J. Camenisch and E. Herreweghen, “Design and implementation of
the idemix anonymous credential system,” Proceedings of the ACM
Conference on Computer and Communications Security, 05 2003.

[23] C. Bapat, “Blockchain for academic credentials,” 2020. [Online].
Available: https://arxiv.org/abs/2006.12665v1

[24] M. Jirgensons and J. Kapenieks, “Blockchain and the future of digital
learning credential assessment and management.” [Online]. Available:
https://files.eric.ed.gov/fulltext/EJ1218203.pdf

[25] I. Gudymenko, A. Khalid, H. Siddiqui, M. Idrees, S. Clauß, A. Luckow,
M. Bolsinger, and D. Miehle, “Privacy-preserving blockchain-based
systems for car sharing leveraging zero-knowledge protocols,” pp. 114–
119, Aug 2020.

[26] H. A. Community. Hyperledger aries. [Online]. Available: https:
//github.com/hyperledger/aries

[27] ——. Hyperledger aries rfcs. [Online]. Available: https://github.com/
hyperledger/aries-rfcs

[28] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical
library os for unmodified applications on sgx,” in Proceedings of the
2017 USENIX Conference on Usenix Annual Technical Conference, ser.
USENIX ATC ’17. USA: USENIX Association, 2017, p. 645–658.

[29] F. Gregor, W. Ozga, S. Vaucher, R. Pires, D. Le, S. Arnautov, A. Martin,
V. Schiavoni, P. Felber, and C. Fetzer, “Trust management as a service:
Enabling trusted execution in the face of byzantine stakeholders,” 06
2020, pp. 502–514.

https://www.wes.org/
https://www.wes.org/
https://ssrn.com/abstract=2883607
https://arxiv.org/pdf/1807.06346.pdf
https://sovrin.org/wp-content/uploads/2018/03/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf
https://sovrin.org/wp-content/uploads/2018/03/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7345265
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://sconedocs.github.io/
https://sconedocs.github.io/SCONE_Fileshield/
https://sconedocs.github.io/SCONE_Fileshield/
https://sconedocs.github.io/MrEnclave/
https://sconedocs.github.io/MrEnclave/
https://doi.org/10.1145/3322205.3311076
http://dud.inf.tu-dresden.de/~ben/kellermann_scholz09_anonymous_credentials_in_web_applications.pdf
http://dud.inf.tu-dresden.de/~ben/kellermann_scholz09_anonymous_credentials_in_web_applications.pdf
https://arxiv.org/abs/2006.12665v1
https://files.eric.ed.gov/fulltext/EJ1218203.pdf
https://github.com/hyperledger/aries
https://github.com/hyperledger/aries
https://github.com/hyperledger/aries-rfcs
https://github.com/hyperledger/aries-rfcs

	Introduction
	Credentials as a Service: a general system setup
	Design Goals
	Threat Model and Protection Mechanisms

	System implementation leveraging Hyperledger Indy and Scone Trusted Execution Environments
	Technical Background
	System Components
	Workflow

	Evaluation
	Evaluation Hardware and Configuration
	Evaluation Modes
	Evaluation Results

	Related Work
	Future Work
	Conclusion
	References

