Encryption Proxies in a Confidential Computing
Environment

Mohamad Jamil Al Bouhairi, Mostakim Mullick, Marvin Wolf, Ivan
Gudymenko, and Sebastian Claufl

T-Systems Multimedia Solutions GmbH, Riesaer Str. 5, 01129 Dresden, Germany
ivan.gudymenko@t-systems.com

Abstract. With the increasing adoption of cloud native applications,
security and privacy are among the pressing concerns hindering a wider
adoption of cloud services. One of the main challenges in this context is
providing reliable protection of customer data from unauthorized usage,
including the cases when adversary gains root access to host systems. Us-
ing transparent data encryption, tokenizataion and pseudonymization by
deploying an encryption proxy between the end user and cloud provider
are some of the established approaches to protect sensitive data in the
cloud. In this paper, we extend the advantages of an encryption proxy
by deploying and securing it using a shielded execution framework based
on Confidential Computing. Our Proof of Concept (PoC) guarantees the
necessary security requirements needed to run in an untrusted computing
infrastructure. The experimental evaluations show that the PoC achieves
reasonable performance results while providing strong security properties
with small Trusted Computing Base.

Keywords: Confidential Computing; Cloud Computing; Intel SGX; SCONE;
Trusted Execution Environment

1 Introduction

Applications have moved from being a rigid monolithic package to an elastic
and loosely connected set of microservices which are often hosted in a cloud
infrastructure. The products have been mostly replaced by services that can
be subscribed according to one’s needs. Thus, a subscriber does not require any
bulky infrastructure to host the application on premises but rather a terminal to
access the service and a stable network is sufficient. This has certainly proven less
hectic as it reduces management cost and time [11]. However, all these benefits
come with a hidden cost.

Cloud computing has presented new challenges and problems that an organi-
zation must solve to fulfil its privacy and security goals. One of the key issues is
data protection. The data is hosted and processed on third party machines and
also being served through cloud providers. Several approaches and solutions can
be used, but these approaches need to take three core aspects into consideration
[6]: data control, usability, and data protection. Data control deals with the man-
agement oversight of cryptographic key possession and control that are necessary

for encryption. Usability considers the measurement of how well cloud services
and their functionalities remain usable with no restrictions to the end-user de-
spite the data encryption. Finally, data protection involves how companies and
organizations control personal data and comply with regulation. Concerns re-
garding data security and the need to comply with legal regulations have slowed
down the process to adopt a cloud-first architecture approach. The use of en-
cryption proxies such as the eperi Gateway [5] have used pseudonymization and
encryption methods to transform personal and sensitive data into a form that
could not be used in a malicious manner. This insures that data in transit and
data at rest is protected at all times. Third parties with access to Personal Identi-
fiable Information (PII) can be alarming [9]. However, anonymized and correctly
pseudonymized data is not observed as PII under the GDPR [10] and therefore
are not the subject of data protection. Yet, a cloud application is not able to
process encrypted/tokenized data unless it has access to the cryptographic keys.
A potential malicious root admin with key access is able to read the data being
processed in clear text. Therefore, a practical and secure solution to protect data
in use is needed.

One emerging technology for confidential computing, trusted execution en-
vironments (TEE) [2] (e.g Intel SGX and AMD SEV) have been widely used to
deploy secure applications allowing data to be secured in all three states (at rest,
in use, and in transit). However, continued adoption of TEE can be impeded by
their limited support for unmodified source code implementations. Particularly,
in the case of Intel Software Guard Extensions (SGX), the program’s source code
is expected to incorporate SGX’s SDK in order to successfully execute inside of
an SGX enclave. This process would entail a lot of effort and is susceptible to
performance issues and attacks [7]. Addressing this usability challenge are secure
container platforms like SCONE [1] which run the binary code inside SGX while
also providing SGX-enabled security guarantees inside cloud environments. The
security requirements regarding confidentiality and integrity are achieved by pre-
venting unauthorized parties such as higher privileged system software (e.g OS
kernel and hypervisor) and malicious users as mentioned previously to access
application data. This ensures that data in use is also protected.

It is important that data in all three states are secured. In this paper, we
take into consideration all three states and combine both existing technologies to
ensure that security guarantees such as confidentiality and integrity are satisfied.
Our PoC extends the data privacy techniques accompanied with the eperi Gate-
way and Intel SGX to design an all-rounded secure approach to data privacy. As
per our knowledge, there has been no previous implementation that leveraged
the features of a TEE such as Intel SGX in securing the eperi Gateway.

In this paper, we showcase the main contributions of our work as follows:

— We leverage the eperi Gateway’s [5] privacy preserving features and extend
the privacy preserving requirements with the Intel SGX TEE,

— Using Intel SGX and the secure container platform SCONE, we use a ’lift
and shift’ approach to transform the encryption proxy to a confidential ap-
plication,

— We evaluate the efficacy of the proposed proof of concept using benchmarks
and compare the overheads as opposed to the native version.

The rest of the paper is organized as follows. Section 2 reviews the related
technologies used in this paper. Section 3 provides the implementation scenario
and the procedure involved. Section 4 describes the experimental setup. Section
5-6 evaluates the proposed proof of concept with the discussion of the results,
and Section 7 concludes the paper.

2 Background and Project Overview

In this section, we briefly review Intel SGX. We describe the existing technologies
used in our implementation, SCONE and the eperi Gateway.

2.1 Intel SGX

Intel Software Guard eXtensions' (SGX) is a set of extensions to the Intel archi-
tecture that provide confidentiality and integrity guarantees for applications even
if the underlying operating system or hypervisor is malicious [1, 3]. Launched in
2015, Intel SGX uses secure hardware based TEEs known as Enclaves. Enclaves
are isolated regions of the memory in which the code running in an enclave is
isolated from other untrusted applications including higher privileged ones. En-
clave code and data reside in a region of protected physical memory called the
enclave page cache (EPC) [1]. Enclave code and data are guarded by CPU access
controls while they are in cache. Data in EPC pages is safeguarded at the gran-
ularity of cache lines when they are relocated to DRAM. SGX provides EPC of
size up to 128 MB in its first generation [12]. The EPC’s cache lines written to
and fetched from DRAM are encrypted and decrypted by an on-chip memory
encryption engine (MEE) [1]. Enclave memory is also integrity protected, i.e.,
memory alterations and rollbacks are noticed in enclave memory.

In addition, Intel SGX provides remote attestation feature. This enables a
challenger to verify the integrity of the TEE. The enclave is measured and the
corresponding report is signed by the Intel’s hardware keys. Combined with
the sealing process (encrypting the data before storing on disk), the data con-
fidentiality is ensured on the cloud. As a result, the use of Intel SGX provides
confidentiality and integrity of application secrets at all times, despite an ad-
versary that can compromise privileged code running on the hosts of the cloud
infrastructure.

2.2 SCONE

Secure CONtainer Environment (SCONE) [1] is a secure container mechanism
for Docker that uses the SGX trusted execution support of Intel CPUs to pro-
tect container processes from outside attacks. SCONE takes into consideration

! https://www.intel.com/content /www /us/en/developer /tools/software-guard-
extensions/overview.html

the apparent issues with native Intel SGX SDK development such as exposed
container interfaces, memory access and system call overheads and deals with
them by providing alternate design suggestions while maintaining small Trusted
Computing Base (TCB):

— SCONE implements File System shield to protect confidentiality and in-
tegrity of files; Network shield to enable end-to-end TLS encryption; and
Console shield to protect the console streams.

— SCONE uses M : N threading scheme while maintaining a thread pool where
M application threads are mapped to N OS threads.

— Finally, SCONE enables asynchronous system calls by utilizing the shared
memory to pass system call arguments and to collect return values.

In addition, SCONE overcomes the poor memory performance of Intel SGX
SDK. Considering the original SGX design goal of protecting tailored code for
security-sensitive tasks, Intel provides an SDK to facilitate the implementation
of simple enclaves. It consists of an interface definition language with a code
generator and a basic enclave library. Unlike SCONE, the SDK lacks the neces-
sary support for system calls and offers only restricted functionality inside the
enclave. The use of SCONE allows for better scalability than using Intel SGX
SDK alone since it provides efficient thread management by using asynchronous
system calls [1].

2.3 Eperi Gateway

Eperi Gateway [5] is an encryption proxy focused on data protection. It can
perform a wide variety of tasks like:

— Encryption and pseudonymization of data before they are transferred to the
cloud application.

— Internal cryptographic key management handling.

— Enforcing uniform data protection policies across all devices and platforms.

The Eperi Gateway consists of a transparent proxy architecture which can be
integrated into any IT environment without requiring the user to apply any
major modifications to the underlying infrastructure or existing workflows. The
encryption and decryption process occurs transparently and in real-time. There-
fore, the solution will run unnoticed in the background while preserving the core
functionalities of the cloud and running applications. This process allows the
user to have the sole and centralized control over the data’s protection. More-
over, the eperi Gateway is flexibly tailored by allowing the client to either use
eperi’s standard encryption algorithm or one’s own algorithm and also it allows
the user to choose which fields should be encrypted, tokenized or left as plain
text. Configuration data is stored encrypted in an adjacent database. Hence,
unauthorized third parties are not able to gain access to the data. However, the
threat model does not consider root admins as potential malicious attackers.
Therefore, this scenario is specifically considered in this paper.

hitps://sfdc.company.com
First Name: Bob

Last Name: Jones
Email: bob@x.com Application data intercepted Encrypted and tokenized

data sent to SaaS

Internal & External Users e Stores encrypted

I tokenized data

FirstName: enc_58x9281

LastName: token5

Emall: token@y.com

Data gets

;.) encrypted/
D tokenized
i
[
R o eperi
Web Browser, Client App Gateway

Token
Database

salesforce

Servicenvw

Azure

Fig. 1: Eperi Gateway workflow. Taken from [5].

The easiest way to understand the eperi Gateway is to think of it as a “broker”
as show in Figure 1. The gateway is separate from the cloud environment whose
data must be protected. This decouples cloud applications from cloud data.
However, this is for a particular use case. In other use cases, the eperi Gateway
can be present on the cloud provider. Depending on the application and access
circumstances, it can also act as a reverse, forward, or API proxy.

In essence, the eperi Gateway essentially serves as a forward and reverse
proxy. According to Figure 1, users access the eperi Gateway from their network
and pass their data to the gateway which is then transparently encrypted before
forwarded to the corresponding cloud application. In this way the eperi Gateway
acts as a forward proxy. In the opposite direction, the eperi Gateway acts as a
proxy server by accepting the data stream that is returned by a cloud service and
then decrypts the encrypted data inside it with the cryptographic key already
in its possession before forwarding the data to the clients in plain-text.

3 Implementation

The intent of the proof of concept is to secure the instance of a cloud encryp-
tion proxy (eperi Gateway) deployed in a cloud environment against the cloud
provider and powerful adversaries possessing administration rights on the infras-
tructure. In this way, we wish to establish a trusted data pipeline in which the
customer data is always in a protected state. This means that sensitive data can
not be accessed in plain text by entities outside the TCB. Based on this motiva-
tion, we propose to leverage an encryption proxy in a confidential environment
to realize this trusted pipeline. The proof of concept (PoC) was deployed on
a virtual machine with Intel SGX-based CPUs. Microsoft Azure provides Intel
SGX enabled confidential compute nodes, i.e, DC Series VMs which are already
pre-configured with the required drivers.

3.1 Eperi with SGX

Conventional applications cannot use SGX features in the native form. To con-
vert an application into a confidential application, it has to be modified or
cross compiled and built using Intel SGX SDK. However, it is not practical to
rewrite the whole application from scratch. Furthermore, Intel SGX SDK sup-
ports C/C++ whereas Eperi Gateway is built using Java. We need some other
tools to convert this application into a confidential application powered by SGX.
One such tool is SCONE which allows us to migrate easily to the confidential
environment.

SCONE [1] introduces an efficient lift and shift transformation approach
called Sconification which involves an automated process using a one step com-
mand, sconify image, to produce the confidential version of the application.
SCONE uses a native container image as input, which is created by an existing
CI/CD pipeline. The image is converted or “sconified” into a confidential con-
tainer image that runs inside an enclave where all data and code are protected.
SCONE uses an automated single step command to achieve this:

sconify_image --from="$NATIVE_IMAGE" --to="$CONFIDENTIAL_IMAGE"
The Sconification procedure consists of the following steps:

1. The command-line tool sconify image encrypts the service’s code and data
and copies these encrypted files into the encrypted image.

2. A security policy is created containing metadata and an additional informa-
tion, e.g, the native image environment and path to working directories, to
perform decryption while also checking for file integrity violations. This pol-
icy is uploaded to the attested SCONE CAS (Configuration and Attestation
Service).

3. To run the confidential container from the encrypted image, SCONE CAS
attests the service first to ensure its trustworthiness.

4. If successful, SCONE CAS sends the service secrets specified in the policy
in order to ensure the service executes smoothly.

Confidential Application Design. In essence, our confidential application
consists of three containers, i.e., Maria DB, Scone LAS (Local Attestation Ser-
vice) and Sconified Eperi. The LAS handles the local attestation of the enclave.
Furthermore, it facilitates the remote attestation by generating a verifiable quote.
We aim to deploy the eperi Gateway in a confidential manner using the SCONE
platform with all the necessary configuration and the required services running
(see Fig. 2). In this manner, the user simply has to run the given script and use
the gateway’s admin portal normally without any database configurations or
source code changes inside the eperi Gateway. The eperi Gateway transparently
encrypts the data on its way to the cloud application. Using SGX, the encryption
key is secured as opposed to the native eperi Gateway deployment.

SCONE cas

Encrypted and tokenized
data sent to SaaS

hitps://sfdc.company.com
First Name: Bob

Last Name: Jones

Application data intercepted

Email: bob@x.com

Attestation I

o SCONE WRAPPER
[[] Stores encrypted
Internal & External Users Data gets I--I I tokenized data
ey =
Feo— tokenized [T T NG St SAal servioenow
[Em 1] Office365 successtactors
: = BE [ocesen (]
ScoNE . [T T}
ﬂ Las | eperi T
Web Browser, Client App Gateway [[1]
Token

Database

Fig. 2: Sconified eperi Gateway workflow. Adapted from [5].

During the start-up, SCONE attests the eperi container and then starts the
bootstrap process for gateway services. The eperi container behaves as a trans-
parent encryption proxy.

The container running MariaDB is not sconified. However, in our setup, Mari-
aDB uses TLS communication while communicating with the eperi Gateway
service. This is important as the lack of encryption would introduce security
concerns, e.g, Man-in-the-middle attack. In addition, our setup ensures data-at-
rest encryption in MariaDB as well. This is ensured through the use of eperi as
a key management and encryption plugin with a negligible encryption overhead
of around 3-5% [8]. The encryption key uses a 32-bit integer as a key identifier.
The eperi Gateway places this key on the key server outside the MariaDB server
itself while still remaining in the secure enclave allowing for an additional secu-
rity guarantee. However, the encryption does not encompass the MariaDB error
log, so sensitive information such as PII may be contained in the log as well.
Nevertheless, our solution is generic in nature and therefore can be extended to
include other confidential applications such as MariaDB. If this path is taken, it
would ensure that MariaDB’s encryption keys and the TLS certificate are pro-
vided only to MariaDB using SCONE’s security policy. SCONE CAS enforces
this policy, i.e., it ensures that only MariaDB running inside of an enclave will
be able to access these keys.

Approach. Sconification simplifies the process of securing a native application
to a large extent. Nevertheless, it is not completely straightforward to build a
confidential encryption proxy using shielded execution as it demands supporting
unaltered applications without degrading the performance. Before the deploy-
ment of the sconified image, it is required to compose the native image along
with some required configurations.

Some initial configuration was needed to set up the required environment.
We followed the eperi documentation [4] to set up a complete work environment
and link the eperi Microsoft 365 adapter. The eperi Microsoft 365 adapter was
needed to connect to a Microsoft SaaS application running on the cloud provider.

In our case, our backend application was Microsoft Outlook. A custom internet
domain has been set up while also the DNS within our Azure cluster has been
configured to identify the new domain. The next step is to configure the eperi
Gateway and specify the application used. The normal workflow starts by a client
sending an email through the eperi Gateway. The eperi Gateway encrypts the
sensitive content of the email according to the specified template. If the receiver
accesses the Microsoft account through the normal Outlook URL, the contents
would be encrypted. If accessed through the custom eperi domain, the contents
would appear in plain text.

The first step of converting a native application into a confidential application
is to determine the sensitive data. After initial investigation, we determined
the directories that contain the application code which is compiled on image
creation. The critical directories include the code directory, the data directory
and the compiled binary. We cannot make any changes to the configuration inside
the eperi Gateway once it is sconified. Therefore, a container with the native
eperi base image has been initially created and deployed. Once the container
is properly set up, it will be used as the native base image in the sconification
process.

After creating a compatible base image and determining the parts to be
secured, we can proceed to sconification. It is imperative that the original image
supports musl libC or GLibC. In case of the latter, the application binary must be
"Position Independent Code" enabled. After setting the environment variables
that would be passed after attestation and the proper file system directories to
encrypt, we execute the sconify_image command using the proper flags. After
sconification, we use a normal docker compose YAML file to deploy the prepared
image along with MariaDB and SCONE LAS (Local Attestation Service). It is
important that we have MariaDB and LAS hosted on the same IPs which we
have defined during docker compose configuration in a previous step.

4 Experimental Setup

In this section, we briefly describe the experiments performed for the proposed
setup. We based our benchmarks on wrk2 ? where a web page behind the eperi
Gateway proxy is fetched. The HTTP benchmarking tool produces two exper-
imental evaluation metrics: a constant throughput load and accuracy latency
details in the high percentiles. The benchmark runs for two minutes using two
threads keeping 50 HTTP connections open, and a constant throughput of 100
requests per second. The setup consists of our client load generator, the eperi
Gateway with the Microsoft Outlook Exchange under a custom domain as a
back-end as shown in the Figure 2. We implemented the services as Docker con-
tainers on the Microsoft Azure platform. The Virtual Machine (VM) has 10
vCPUs with 32 GiB of main memory. The disk configuration is irrelevant as all
the services fit into memory. We tested two different setups each with different

2 https://github.com /giltene/wrk2

resource demand. The first setup is the plain native eperi Gateway image (v
21.17.1.0). The image has been pulled from the eperi docker repository with no
modifications made. Native means execution that was performed without SGX
and therefore also without SCONE. Native executions ran, like the versions us-
ing SCONE, inside a Docker container. The performance influence of Docker
is therefore out of the equation. The second setup includes the eperi Gateway
image converted to a secure image by using the SCONE platform running in an
Intel SGX enclave.

Table 1: Average Latency of both setups
Images |Average Latency (ms)
Native 423

Sconified 912

5 Results

In this section, we present the results of our experiments on the different setups
along with the analysis of the tests.

5.1 Latency

Latency is another key metric to assess the performance of a certain web applica-
tion as the responsiveness of interactive applications directly influences the qual-
ity of user experience. This has become a critical concern for service providers.
Latency can be defined as the duration it takes a request to reach its destination
across the network and receive an acknowledgement. The average latency of both
setups can be visualized in Table 1. The sconified version has an average latency
of around twice the native Eperi deployment.

As mentioned in Section 2.3, the above value would outperform a setup using
SGX SDK alone. When an enclave performs a system call, SCONE switches to
another application thread while the system call is performed by threads running
outside the enclave. This minimizes the need for the threads running inside the
enclave to exit the enclave. Minimizing the enclave exits is particularly important
since it is a costly operation. With this mechanism in place, we can observe a
reasonable latency increase.

Figure 3 defines the percentile distribution of latency for HTTP requests
from client to Microsoft Outlook via native and sconified deployments of Eperi
Gateway. We can ignore the final spike in the graph as an effect of stragglers.
Around one-third of requests are served within 450 milliseconds and ninety per-
cent within 1.2 seconds in sconified version whereas ninety percent HT'TP re-
quests are served within 500 milliseconds in native deployment of Eperi Gateway.
We also have tested out the use of JMeter as a load testing tool. The request

31 | —#— Native Eperi ™
—m— Sconified Eperi |

2.7+
2.4+
.
21| ‘
u
184 ‘
154 .

124 L. _.,,.,-r-ﬁ'
0.9 | - £

0.6 + e o?®
03+

Latency (s)

:;-t'_'{';:f;—rfr .-

10 20 30 40 50 60 70 80 90 100
Latency (Percentile)

Fig. 3: Latency by percentile distribution

—e— Native Eperi - —e— Native Eperi -— B
8,000 | | —m— Sconified Eperi / =— Sconified Eperi /
- 800
6,000 f 00 /
£ 4000 / SR
Z / £ 500
= 2,000 e 5
3 E 400 _
% - =] —
8 60 s0 100 120 140 160 & 60 80 100 13 140
= Throughput (req/sec) © Throughi .
ghput (req/sec)
Fig. 4: Throughput versus latency Fig.5: CPU utilization versus latency
for both setups for both setups

consisted of random strings in the payload to any increase the size of the request.
The request was similar to one used in the previous experiment. The outcome
showcased similar results with very minor differences in latency as shown in this
section.

5.2 Throughput

The second experimental benchmark consists of issuing requests at increasing
constant rates (x-axis) until the response latency spikes (y-axis). Figure 4 shows
that both setups exhibit comparable performance until 100 requests per sec-
ond, at which point the latency of the Sconified deployment increases dramati-
cally. The native eperi deployment performs slightly better, reaching 110 requests
per second. A closer look into the CPU utilization shown in Figure 5 explains
the aforementioned results. CPU usage was measured using Docker’s built-in
mechanism for viewing resource consumption, docker stats. Both the native and
Sconified deployment reach a maximum CPU utilization at 790% and 910%,
respectively under maximum throughput.

5.3 Security requirements

In this section, we further look into the non-functional security requirements
that are needed to safely run in a public cloud. The cloud provider operates the
hardware, the cloud stack, and the OS. Relying on the cloud provider to do all the
resource management decreases the complexity of running a cloud application.
However, this also forces an application owner to give data and application
sovereignty to the cloud provider. Intel SGX supported by the SCONE Platform,
however, allows the application owner not to be in a position to "blindly" trust
and give this power to neither the cloud provider nor malicious root users. Using
SCONE, despite not having full control of neither the hardware nor the software
setup, we can ensure that nobody (except for the program itself) can change
parts of the program.

The desired level of protection is a design choice made by the application
owner. Even if this choice changes, the program does not need to be changed.
The objectives considered for this experiment are confidentiality, integrity and
consistency. Confidentiality protected means that the protected resource cannot
be read by entities not authorized by the security policy of the application.
Integrity protected means that the protected resource can only be modified by
entities authorized by the security policy of the application. All other changes
are automatically detected and cause the program to terminate. Consistency
protected means that changing the version of the protected resource will be
detected and cause the program to terminate, unless the software update was
authorized by the application owner. The assumption is that the program itself
and userID are readable but not changeable. This also applies to the secrets and
environment variables used by the eperi Gateway.

To verify confidentiality protection of the secrets and environment variables
passed by CAS, we observe that all attempts to find values of the passed secrets
and environment variables fail, since these variables are confidentiality protected
as defined in the policy. However, this is not the case in the native eperi Gateway
image where these variables are readable and can be configured. In fact, not
even an entity with root access rights to the system of the application owner
can access the secrets and environment variables, but only the application itself.
To verify integrity protection, we attempt to change the environment variable
path by adding another file to read the environment variables from. However,
any change to the state of the application gets detected. This can be verified by
looking at the hash of the environment variables is identical to the one before
modification. To verify consistency protection, we simulate an attack on the
consistency protection of the environment variables and check if an older version
of these variables has been detected. First, we create and deploy a new version of
the eperi Gateway application (version 2) which only differs from version 1 in its
environment variables. However, when environment variables from version 2 are
uploaded to CAS, the old variables from version 1 will no longer be present in
CAS and we therefore have nothing to which we can revert. But for the sake of
argument, we can assume that the attacker in some way had indeed got hold of a
copy of the version 1 eperi Gateway password. The attacker would have to upload

it to CAS, in order for it to become the correct variable. As soon as the upload
to CAS has taken place, however, this is considered to be a new, authorized
version (version 3). Hence, we did not succeed in reverting the variables to ones
present in version 1 without the change being detected and the attack on the
consistency protection failed.

6 Discussion

Confidential computing provides additional security guarantees with respect to
confidentiality and data integrity, which is especially relevant in a cloud setting.
However, this does not solve all the security related issues. Applications are still
vulnerable to threats such as side channel attacks. Nevertheless, if applied in the
right way, Confidential Computing can be used to further enhance the security
posture of cloud-based applications.

We have seen that Eperi Gateway behaves normally when the whole workflow
is tested. This test was performed using the confidential version of the product.
Despite certain performance penalties, we could still observe the results allowing
for reasonable end user experience. This means that when accessing an applica-
tion such as Microsoft Outlook with a load that resembles normal user behavior,
the confidential eperi Gateway image results in low latencies that resembles
values observed when using the native version of the eperi Gateway. Despite
one-time bootrapping delays, the overall performance can be considered to be
acceptable for the most use case.

7 Conclusion

Cloud Computing introduces new problems regarding data privacy and security
as well as data and code sovereignty. We have to trust cloud providers with
sensitive information. One solution to protect our sensitive data and code is
to encrypt it before uploading it to the cloud, an approach adopted by Eperi.
However, we need to secure the environment which hosts the encryption proxy.
To achieve this, we use Confidential Computing.

There are different confidential computing technologies one can use. Intel
SGX is one of the technologies which reduces our Trusted Computing Base sig-
nificantly and provides a way to attest our platform albeit with some sacrifice in
performance. AMD SEV is another technology which makes it easy to switch to
a confidential virtual machine without any changes in application code. However,
the TCB in this case includes the whole VM including guest OS.

8 Future Work

We plan to incorporate heavier back-end applications behind the native and
confidential eperi Gateway and test their effect on the gateway’s behavior. We

also plan to use the confidential image of MariaDB instead of the native version
we used in our experiments.

We still cannot generalize the change in performance of third party applica-
tions in confidential computing environment. From our observations, we know
that there are some added overheads in SGX powered applications. Each ap-
plication has its own architecture and combined with the technique one might
use to convert it into a confidential application, the final architecture could vary
greatly. We may try to group the performances of certain architectural and de-
sign patterns with probable overheads but that remains to be seen in future.

Confidential Computing is an evolving and dynamically developing field. In
VM based trusted execution environments, until now we only had AMD’s SEV
in the market. However, recently, Intel announced their own VM based TEE, the
Trust Domain eXtenstions (TDX) [6]. In addition, Google Cloud Platform offers
Secure Encrypted Virtualization (SEV) based confidential computing solutions
primarily. We could use Google Kubernetes Engine (GKE) to deploy a cluster of
confidential VMs. This can be used to compare the deployment of the confidential
eperi Gateway on different types of TEEs.

References

1. Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind,
J., Muthukumaran, D.; O’Keeffe, D., Stillwell, M.L., Goltzsche, D., Eyers, D.,
Kapitza, R., Pietzuch, P., Fetzer, C.: SCONE: Secure linux containers with intel
SGX. In: 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16). pp. 689-703. USENIX Association, Savannah, GA (Nov 2016),
https://www.usenix.org/conference/osdil6/technical-sessions/presenta
tion/arnautov

2. Consortium, C.C.: Confidential Computing: Hardware-Based Trusted Execution
for Applications and Data (01 2021), https://confidentialcomputing.io/white
paper-01-latest, Last accessed 19 Dec 2021

3. Costan, V., Devadas, S.: Intel sgx explained. Cryptology ePrint Archive, Report
2016,/086 (2016), https://ia.cr/2016/086

4. Eperi: Adapter for Microsoft 365, https://adminmanuals.eperi.com/administr
ator_manuals/en/concepts/egfca_o365_about_document.html, Last accessed
06 Jan 2022

5. Eperi: Eperi gateway: The right approach to effective cloud data protection (06
2018), https://blog.eperi.com/en/eperi-gateway-the-right-approach-to-
effective-cloud-data-protection, Last accessed 19 Feb 2022

6. Intel: Intel®Trust Domain Extensions (2020), https://www.intel.com/conten
t/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf, Last
accessed 22 Feb 2022

7. Mahhouk, M., Weichbrodt, N., Kapitza, R.: Sgxometer: Open and modular bench-
marking for intel sgx. In: Proceedings of the 14th European Workshop on Sys-
tems Security. p. 55-61. EuroSec ’21, Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3447852.3458722, https:
//doi.org/10.1145/3447852.3458722

8. MariaDB: Eperi Key Management Encryption Plugin, https://mariadb.com/kb
/en/eperi-key-management-encryption-plugin/, Last accessed 18 March 2022

10.

11.

12.

Shakil, Arif, M., Sohail, S.S., Alam, M.T., Ubaid, S., Nafis, M.T., Wang, G.: To-
wards a two-tier architecture for privacy-enabled recommender systems (pers). In:
Wang, G., Choo, K.K.R., Ko, R.K.L., Xu, Y., Crispo, B. (eds.) Ubiquitous Security.
pp. 268-278. Springer Singapore, Singapore (2022)

Skendzi¢, A., Kovaci¢, B., Tijan, E.: General data protection regulation — protec-
tion of personal data in an organisation. In: 2018 41st International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). pp. 1370-1375 (2018). https://doi.org/10.23919/MIPRO.2018.8400247
Srivastava, P., Khan, R.: A review paper on cloud computing. International Journal
of Advanced Research in Computer Science and Software Engineering 8, 17 (06
2018). https://doi.org/10.23956 /ijarcsse.v8i6.711

Xing, B., Shanahan, M., Leslie-Hurd, R.: Intel®) Software Guard Extensions (In-
tel® SGX) Software Support for Dynamic Memory Allocation inside an Enclave.
pp. 1-9 (06 2016). https://doi.org/10.1145/2948618.2954330

