Intersections

L N

TECHNISCHE DRESDEN r \
Lk s4/11s QA



Intersections

e Grids may be non conforming.

e Entities can intersect with neighbours and boundary.

e Represented by Intersection objects.

e |ntersections hold topological and geometrical information.
e |ntersections depend on the view.

e Note: Intersections are always of codimension 1!

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN 5s5/¢15  conce S



Intersection Interface

e |s this an intersection with the domain boundary?

bool b = intersection.boundary();

e |s there an entity on the outside of the intersection?

bool b = intersection.neighbor();

e Get the cell on the inside

auto inside_cell = intersection.inside();

e Get the cell on the outside

// Do this only if intersection.neighbor() == true
auto outside_cell = intersection.outside();

e
DRESDEN 56 / 1 1 5

DRESDEN
concept

L N

\

~ A



Intersection: Geometries

e Get mapping from intersection reference element to global
coordinates

auto world_geo = intersection.geometry();

e Get mapping from intersection reference element to reference
element of inside cell

auto inside_geo = intersection.geometryInInside();

e Get mapping from intersection reference element to reference
element of outside cell

auto outside_geo = intersection.geometryInOutside(); .

£ N

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN 577115 concert el



Intersection: Normals

e Get unit outer normal for local coordinate.

auto unit_outer_normal = intersection.unitOuterNormal(x_local);

e Get unit outer normal for center of intersection (good for affine

geometries).
auto unit_outer_normal = intersection.centerUnitOuterNormal();

e Get unit outer normal scaled with integration element
(convenient for numerical quadrature).

auto integration_outer_normal
= intersection.integrationOuterNormal(x_local);

e
DRESDEN 58 / 1 1 5

£ N

DRESDEN r ‘
concept V‘



Iterating over intersections

Example

In order to iterate over the intersections of a given grid cell with respect to some
GridView, use a range-based for loop with the argument intersections(gv,cell).

The following code iterates over all cells in a GridView and over all intersections of each
cell:

for (const auto& cell : elements(gv)) {
for (const auto& is : intersections(gv, cell)) {
if (is.boundary()) {
// handle potential Neumann boundary
b

if (is.neighbor()) {
// code for Discontinuous Galerkin or Finite Volume
}

}
}

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 59/115 concert el



Sequential finite volume solver

Elementwise divergence of a vector field:

/V-f(a:)da:: f(x) - ngr ds
T oT

Consider the first-order linear PDE 0;u + V - (vu) = 0 with given vector field v(x) and
unknown solution u(x, t). The structure-explicit cell-centered finite volume method reads

{(T, T'Nin I(T)} \phi(v\cdot\mathbf{n}T, \bar{u} T k, \bar{u {T'}"k) [I(T,T)| u"Tk+1 =u"TKk
— | T AT, THENT)Y d(v - nT,u"Tk,u T'k)|I(T, T")| with the numerical flux function ¢

chosen as upwind flux here.

l keep this in mind for exercise 3

L N

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN ecO/115 conce S



Attaching Data to the Grid

TECHNISCHE
UNIVERSITAT
DRESDEN

61/115

DDDDDDD



Attaching Data to the Grid

For computations we need to associate data with grid entities:

e spatially varying parameters

e entries in the solution vector or the stiffness matrix
e polynomial degree for p-adaptivity

e status information during assembling

L N

TECHNISCHE v \
o DRESDEN
UNERSITAT 62/115 = 1@



Attaching Data to the Grid

For computations we need to associate data with grid entities:

e spatially varying parameters

e entries in the solution vector or the stiffness matrix
e polynomial degree for p-adaptivity

e status information during assembling

.. meaning we want to

e associate data with subsets of entities

e subsets could be "vertices of level ", "faces of leaf elements" ...
e data should be stored in arrays for efficiency

e associate index/id with each entity

£ N

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN e2/11%  conce S



Indices and Ids

Index Set: Provides a map m : E — Ny, where E is a subset of the entities of a grid view.

We define the subsets Eg of a grid view
E, = {e € E|e has codimension c and geometry type g}.

* unique within the subsets E.
e consecutive and zero-starting within the subsets Eg.
e distinct leaf and a level index.

L N

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN e3/115  conce S



Indices and Ids

Index Set: Provides a map m : E — Ny, where E is a subset of the entities of a grid view.

We define the subsets Eg of a grid view
E, = {e € E|e has codimension c and geometry type g}.

e unique within the subsets Eg.
e consecutive and zero-starting within the subsets Eg.
e distinct leaf and a level index.

Id Set: provides amap m : E — I, where Iis a discrete set of ids.
® unique within F.

e ids need not to be consecutive nor positive.
e persistent with respect to grid modifications.

£ N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN e3/115  conce S



Example: Store the lengths of all edges

The following example demonstrates how to

e query an index set for the number of contained entities of a certain codimension (so

that we can allocate a vector of correct size).

e obtain the index of a grid entity from an index set and use it to store associated data.

// Get the IndexSet associated to a GridView gv
const auto& index_set = gv.indexSet();

// Create a vector with one entry for each edge
auto edge_lengths = std::vector<double>(index_set.size(1));

// Loop over all edges and store their length
for (const auto& edge : edges(gv))
edge_lengths[ index_set.index(edge) ] = edge.geometry().volume();

e
DRESDEN 64 / 1 1 5

DRESDEN
concept

L N

\

~ A



Example: 2D Multi-Element Grid - Indices

Locally refined grid:

IR
DRESDEN 65 / 1 1 5

DDDDDDD



Example: 2D Multi-Element Grid - Indices

Locally refined grid:

IR
DRESDEN 66 / 1 1 5

DDDDDDD



Example: 2D Multi-Element Grid - Indices

Locally refined grid: Indices

Consecutive index for vertices

.

TECHNISCHE v \
UNIVERSITAT DRESDEN
DRESDEN ©o//11%5  conce S



Example: 2D Multi-Element Grid - Indices

Locally refined grid: Indices

... and cells

e
DRESDEN 68 / 1 1 5

DDDDDDD



Example: 2D Multi-Element Grid - Indices

k ‘
NN
l ki

Old cell indices on coarse grid level

Locally refined grid: Indices

g ~
DRESDEN 69/11% e PN g



Example: 2D Multi-Element Grid - Indices

Locally refined grid: Indices

Consecutive cell indices on coarse and refined grid

ROMNSSHE o oneo "N
DRESDEN o/t —  conce Pt N 4



Example: 2D Multi-Element Grid - Indices

.k ‘
NN\o =

Persistent Ids on coarse and refined grid

Locally refined grid: Ids

S ~
DRESDEN 17/ - conce S



Mapper

Mappers extend the functionality of Index Sets.

e associate data with an arbitrary subsets ' C F of the entities E of a grid.
e the data D(E'") associated with E’ is stored in an array.

e map from the consecutive, zero-starting index Iy = {0,...,|E’| — 1} to the data set
D(E").

Mappers can be easily implemented upon the Index Sets and Id Sets.

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN /2/115  conc S



Mapper

Mappers extend the functionality of Index Sets.

e associate data with an arbitrary subsets ' C F of the entities E of a grid.
e the data D(E'") associated with E’ is stored in an array.

e map from the consecutive, zero-starting index Iy = {0,...,|E’| — 1} to the data set
D(E").

Mappers can be easily implemented upon the Index Sets and Id Sets.
Example

You will be using the

Dune: :MultipleCodimMultipleGeomTypeMapper<GridView>

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN /2/115  conc S



#include <dune/grid/common/mcmgmapper .hh>
using GridView = SomeGrid::LeafGridView;

// Layout description
Dune: :MCMGLayout layout = [](Dune::GeometryType gt, int griddim) {
return gt.dim() == griddim;

+;

// mapper for elements (codim==0) on leaf
using Mapper = Dune::MultipleCodimMultipleGeomTypeMapper<GridView>;
Mapper mapper{gridview, layout};

// iterate over the leaf
for (const auto& entity : elements(gridview))
{
int index = mapper.index(entity);
// iterate over all intersections of this cell
for (const auto& i : intersections(gridview, entity))

// neighbor intersection
if (i.neighbor()) {
int nindex = mapper.index(i.outside());
sparsityPattern[index].insert(nindex);
}
¥
}

lTJEl(I:\I/-IENRIgI(':I'I}E DRESDEN VA‘
DRESDEN 73/115 concert Qi



Input and Output

TECHNISCHE
UNIVERSITAT
DRESDEN

74 /115

DRESDEN ‘



Input and Output

e We need to provide a grid either by geometric description or loaded from file
e Powerful grid generators exist, exporting grids in multiple formats

e For the visualization of grid we also need to write the geometry and maybe attached
data in a common file format

In this section:;

1. Grid factories

2. Structured grid generation
3. Reading grids from file

4. Writing output to a file

-lrJEl(I:\I/-IENRIEI(':I'Iz"E DRESDEN VA‘
DRESDEN /5/11%  conce Pt



Grid Factories

A grid is a combination of elements, described by their vertex coordinates + a
connectivity of the element nodes.

All Dune grids provide a Grid Factory that allows to create a grid by these two
information

Dune: :GridFactor<SomeGrid> factory;
The factory then provides two main methods:

void insertVertex (const FieldVector<ct,dimworld>& pos);
void insertElement (const GeometryType& type, const std::vector<unsigned int>& vertices)

Construct the grid after inserting vertices and element connectivity:

std::unique_ptr<SomeGrid> createGrid ();

TECHNISCHE
UNIVERSITAT DRESDEN

DRESDEN 76 / 1 1 5 concept

L N

\

~ A



Grid Factories

Example

Dune: :GridFactory<SomeGrid> factory;

factory.insertVertex ({0, 0, 0});

factory.insertVertex({1, 0, 0});
factory.insertVertex({0, 1, 0});
factory.insertVertex ({1, 1, 0});
factory.insertVertex({0, 0, 1});
factory.insertVertex({1, 0, 1});
factory.insertVertex({0, 1, 1});
factory.insertVertex({1, 1, 1});

namespace GT = Dune::GeometryTypes,;

factory.insertElement (GT: :tetrahedron, {0, 1, 3, 7}); // insertion-index 0
factory.insertElement(GT::tetrahedron, {0, 5, 1, 7}); // insertion-index 1
factory.insertElement(GT::tetrahedron, {0, 4, 5, 7}); // insertion-index 2
factory.insertElement (GT::tetrahedron, {0, 6, 4, 7}); // insertion-index 3
factory.insertElement(GT::tetrahedron, {0, 2, 6, 7}); // insertion-index 4
factory.insertElement (GT::tetrahedron, {0, 3, 2, 7}); // insertion-index 5

std: :unique_ptr<SomeGrid> gridPtr = factory.createGrid();

L N

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN 777115 concept o4



Grid Factories

e |dentify elements in the constructed grid, by insertion-index
unsigned int insertionIndex (const typename Codim<0>::Entity& entity);

e Note: The insertion-index might be different from the entity index in the Index Set

Example

auto const& indexSet = gridPtr->leafIndexSet();
for (auto const& cell : elements(*gridPtr))

{

auto index = indexSet.index(cell);
auto insertion_index = factory.insertionIndex(cell);

// in general: index != insertion_index

}

L N

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN 78/ 115 concert el



Structured Grid Generation

e Some standard Grid Factories exist for rectangular domains

#include <dune/grid/utility/structuredgridfactory.hh>

Dune: :StructuredGridFactory<SomeGrid>

e These structured factories provide static methods to construct cube/simplex grids of a
prescribed domain:

std: :unique_ptr<SomeGrid> createCubeGrid (const FieldVector<ct,dimworld>& lowerlLeft,
const FieldVector<ct,dimworld>& upperRight,
const std::array<unsigned int,dim>& elements);

std::unique_ptr<SomeGrid> createSimplexGrid (const FieldVector<ct,dimworld>& lowerlLeft,
const FieldVector<ct,dimworld>& upperRight,
const std::array<unsigned int,dim>& elements);

L N

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN 79/ 115 concert el



Structured Grid Generation

Example

A domain Q = [0, 2] x |0, 4] with 100 elements in x direction and 200 elements in y
direction

using GridType = Dune: :UGGrid<2>;
using Factory = Dune::StructuredGridFactory<GridType>;

auto gridPtr = Factory::createCubeGrid({0.0,0.0}, {2.0,4.0}, {100u,200u});

But also simplex elements can be used:

using GridType = Dune::UGGrid<2>;
using Factory = Dune::StructuredGridFactory<GridType>;

auto gridPtr = Factory::createSimplexGrid({0.0,0.0}, {2.0,4.0}, {100u,200u});

TECHNISCHE
UNIVERSITAT DRESDEN
DRESDEN 80/115 concept

L N

\

~ A



Reading Grids from File

External tools like GMsh or ParaView or CAD tools export their grids in a specific file
format. In order to create a Dune Grid from these file, the content needs to be parsed and
a GridFactory can be filled with the vertices and element connectivity.

For some file formats this is already implemented in dune-grid:

e GMsh (2.x)
e StarCD

e DGF

e AmiraMesh
e AlbertaGrid

With external modules also other formats are supported, e.g., GMsh (4.x) with dune -
gmsh4 and VTK with dune-vtk.,

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 1/11t5s - conce S



Reading Grids from File

Example
Reading a grid from a GMsh 2.x file

#include <dune/grid/io/file/gmshreader>

using Reader = Dune::GmshReader<SomeGrid>;
std::unique_ptr<SomeGrid> gridPtr = Reader::read(<filename>);

L N

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN 82/115 concert Qi



Reading Grids from File

Example
Reading a grid from a GMsh 2.x file

#include <dune/grid/io/file/gmshreader>

using Reader = Dune::GmshReader<SomeGrid>;
std: :unique_ptr<SomeGrid> gridPtr = Reader::read(<filename>);

Some readers provide interfaces to also read data, e.g. with the GMshReader

Dune: :GridFactory<SomeGrid> factory;

std::vector<int> boundaryTags;

std: :vector<int> elementTags;

Reader: :read(factory, <filename>, boundaryTags, elementTags);

std::unique_ptr<SomeGrid> gridPtr = factory.createGrid();

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 82/115 concert el



Writing Output to a File

For the visualization of simulation results, you need to write the grid and attached data to a
file. Acommon output format is VTK.

Dune provides a VTKWriter and also sequence writers for animation files:
#include <dune/grid/io/file/vtk.hh>

Dune: :VTKWriter<GridView>;
Dune: :VTKSequenceWriter<GridView>;

-lrJF‘l(I:\I/-IENRIgI(':I'I}E DRESDEN VA‘
DRESDEN 83/115 concert el



Writing Output to a File

For the visualization of simulation results, you need to write the grid and attached data to a
file. Acommon output format is VTK.

Dune provides a VTKWriter and also sequence writers for animation files:

#include <dune/grid/io/file/vtk.hh>

Dune: :VTKWriter<GridView>;
Dune: :VTKSequenceWriter<GridView>;

A writer is constructed from a GridView and allows to attach data on the cells or on the
vertices:

void addCellData (...);
void addvertexData (...);

where the argument is something that can be evaluated on the corresponding grid entities:

e A container of values with contiguous indexing of the entity values
e A localizable function (see later)

L N

TECHNISCHE 4 \
UNIVERSITAT DRESDEN
DRESDEN 83/11t5 conce S



Writing Output to a File

Example
Writing a vector of values attached to the grid cells to a file
Dune: :VTKWriter writer{gv, Dune::VTK::nonconforming}; // write a non-conforming grid

auto u = std::vector<double>(gv.size(0));
writer.addCellData(u, "c", 1); // vector contains 1 value per cell

writer.write('"concentration", "output", ""); // write into the directory output/

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 84 /115 concert Qi



Writing Output to a File

Example
Writing a vector of values attached to the grid cells to a file

Dune: :VTKWriter writer{gv, Dune::VTK::nonconforming}; // write a non-conforming grid

auto u = std::vector<double>(gv.size(0));
writer.addCellData(u, "c", 1); // vector contains 1 value per cell

writer.write('"concentration", "output", ""); // write into the directory output/

A VTKSequenceWriter is constructed with the output location:

Dune: :VTKSequenceWriter writer{gv, '"concentration", "output", "", Dune::VTK::nonconforming};
writer.addCellData(u, "c", 1);
writer.write(time);

TECHNISCHE
UNIVERSITAT DRESDEN
DRESDEN 84/115 concept

L N

\

~ 4



Exercise 3

TECHNISCHE
UNIVERSITAT DRESDEN @
DRESDEN 85/11%ss  conce pt




Exercise 3
The partial differential equation considered in this exercise is the linear transport equation,

ou(z,t)+ V- (v(x)u(x,t)) =0 in {2
u(z,t) = uz(x,t) only,

The unknown solution is denoted by u(x, t) and the velocity field by v(z). The domain €2 is
some open subset of R%. For this exercise, we choose d = 2 where intersections are 1-D edges.
The inflow boundary \text{in}lin is the set of points x on the boundary of €2 for which the
velocity vector v(x) points inwards.

We want to numerically solve this equation by a cell-centered finite volume scheme. We
discretize the domain €2 by a triangulation 7 ;, and approximate the solution u by a

function uy, that is constant on each cell T' € T,. We denote the value of u on a cell T' by
ur.

TECHNISCHE
UNIVERSITAT DFiEﬁICZ)eEN @
DRESDEN 86/115 Pt



Exercise 3

Using the explicit Euler time discretization, the scheme can be written as

tkr1 — T e
uT(tk+1) — uT(tk) _ +‘T’ Z ‘eyue(tk)n% v
ecOT

The notation is as follows: |T'| is the area of the cell T', the sum runs over all intersections e
of T" with either the boundary or a neighboring cell, |e| is the length of edge e, 15 is the
unit outer normal of edge e and v° is the velocity at the center of edge e. Finally, u® denotes the
upwind concentration. If ng - v¢ > 0, this is ug. Otherwise it is either the concentration in the
neighboring cell or given by the boundary condition \text{in}uin, depending on the location of

€.

TECHNISCHE
UNIVERSITAT DFiEﬁICZ)eEN @
DRESDEN 8//115 Pt



Exercise 3

For the concrete setup, consider:
Grid Q = [0, 1] x |0, 1] with 100 elements in each direction

ur (to) = ug(center(T)) with

@ - {1 iz (0.15,015)] < 0.05
Y\T) =9 0 otherwise

Velocity v = (1, 1)
Boundary condition uj, = 0

Time interval t € |0, 1] with timestep size ty, 1 — tx = 0.5 - h with h the grid size.

IR
DRESDEN 88 / 1 1 5



