
Intersections

54 / 115

Intersections
Grids may be non conforming.
Entities can intersect with neighbours and boundary.
Represented by Intersection objects.
Intersections hold topological and geometrical information.
Intersections depend on the view.
Note: Intersections are always of codimension 1!

55 / 115

Intersection Interface
Is this an intersection with the domain boundary?
bool b = intersection.boundary();

Is there an entity on the outside of the intersection?
bool b = intersection.neighbor();

Get the cell on the inside
auto inside_cell = intersection.inside();

Get the cell on the outside
// Do this only if intersection.neighbor() == true
auto outside_cell = intersection.outside();

56 / 115

Intersection: Geometries
Get mapping from intersection reference element to global
coordinates
auto world_geo = intersection.geometry();

Get mapping from intersection reference element to reference
element of inside cell
auto inside_geo = intersection.geometryInInside();

Get mapping from intersection reference element to reference
element of outside cell
auto outside_geo = intersection.geometryInOutside();

57 / 115

Intersection: Normals
Get unit outer normal for local coordinate.
auto unit_outer_normal = intersection.unitOuterNormal(x_local);

Get unit outer normal for center of intersection (good for affine
geometries).
auto unit_outer_normal = intersection.centerUnitOuterNormal();

Get unit outer normal scaled with integration element
(convenient for numerical quadrature).
auto integration_outer_normal
= intersection.integrationOuterNormal(x_local);

58 / 115

Iterating over intersections

Example
In order to iterate over the intersections of a given grid cell with respect to some
GridView , use a range-based for loop with the argument intersections(gv,cell) .

The following code iterates over all cells in a GridView and over all intersections of each
cell:

for (const auto& cell : elements(gv)) {
 for (const auto& is : intersections(gv, cell)) {
 if (is.boundary()) {
 // handle potential Neumann boundary
 }
 if (is.neighbor()) {
 // code for Discontinuous Galerkin or Finite Volume
 }
 }
}

59 / 115

Sequential finite volume solver
Elementwise divergence of a vector field:

Consider the first-order linear PDE with given vector field and
unknown solution . The structure-explicit cell-centered finite volume method reads

{(T,T')\in I(T)} \phi(v\cdot\mathbf{n}T, \bar{u}_T^k, \bar{u}{T'}^k) |I(T,T')| uˉT k+1 = uˉT k

− ∣T∣Δt (T ,T ′)∈I(T)∑ ϕ(v ⋅ nT , uˉT k , uˉT ′k)∣I(T , T ′)∣ with the numerical flux function

chosen as upwind flux here.

 ∇ ⋅∫
T

f(x) dx = f(x) ⋅∫
∂T

n ds∂T

∂ u +t ∇ ⋅ (vu) = 0 v(x)
u(x, t)

ϕ

keep this in mind for exercise 3

60 / 115

Attaching Data to the Grid

61 / 115

Attaching Data to the Grid
For computations we need to associate data with grid entities:

spatially varying parameters
entries in the solution vector or the stiffness matrix
polynomial degree for p-adaptivity
status information during assembling
...

62 / 115

Attaching Data to the Grid
For computations we need to associate data with grid entities:

spatially varying parameters
entries in the solution vector or the stiffness matrix
polynomial degree for p-adaptivity
status information during assembling
...

... meaning we want to

associate data with subsets of entities
subsets could be "vertices of level l", "faces of leaf elements" ...
data should be stored in arrays for efficiency
associate index/id with each entity

62 / 115

Indices and Ids
Index Set: Provides a map , where is a subset of the entities of a grid view.

We define the subsets of a grid view

unique within the subsets .

consecutive and zero-starting within the subsets .
distinct leaf and a level index.

m : E → N 0 E

E g
c

E =g
c {e ∈ E∣e has codimension c and geometry type g}.

E g
c

E g
c

63 / 115

Indices and Ids
Index Set: Provides a map , where is a subset of the entities of a grid view.

We define the subsets of a grid view

unique within the subsets .

consecutive and zero-starting within the subsets .
distinct leaf and a level index.

Id Set: provides a map , where is a discrete set of ids.

unique within .
ids need not to be consecutive nor positive.
persistent with respect to grid modifications.

m : E → N 0 E

E g
c

E =g
c {e ∈ E∣e has codimension c and geometry type g}.

E g
c

E g
c

m : E → I I
E

63 / 115

Example: Store the lengths of all edges
The following example demonstrates how to

query an index set for the number of contained entities of a certain codimension (so
that we can allocate a vector of correct size).
obtain the index of a grid entity from an index set and use it to store associated data.

// Get the IndexSet associated to a GridView gv
const auto& index_set = gv.indexSet();

// Create a vector with one entry for each edge
auto edge_lengths = std::vector<double>(index_set.size(1));

// Loop over all edges and store their length
for (const auto& edge : edges(gv))
 edge_lengths[index_set.index(edge)] = edge.geometry().volume();

64 / 115

Example: 2D Multi-Element Grid – Indices
Locally refined grid:

65 / 115

Example: 2D Multi-Element Grid – Indices
Locally refined grid:

66 / 115

Example: 2D Multi-Element Grid – Indices
Locally refined grid: Indices

Consecutive index for vertices

67 / 115

Example: 2D Multi-Element Grid – Indices
Locally refined grid: Indices

... and cells

68 / 115

Example: 2D Multi-Element Grid – Indices
Locally refined grid: Indices

Old cell indices on coarse grid level

69 / 115

Example: 2D Multi-Element Grid – Indices
Locally refined grid: Indices

Consecutive cell indices on coarse and refined grid

70 / 115

Example: 2D Multi-Element Grid – Indices
Locally refined grid: Ids

Persistent Ids on coarse and refined grid

71 / 115

Mapper
Mappers extend the functionality of Index Sets.

associate data with an arbitrary subsets of the entities of a grid.
the data associated with is stored in an array.
map from the consecutive, zero-starting index to the data set

.

Mappers can be easily implemented upon the Index Sets and Id Sets.

E ⊆′ E E

D(E)′ E′

I =E′ {0, … , ∣E ∣ −′ 1}
D(E)′

72 / 115

Mapper
Mappers extend the functionality of Index Sets.

associate data with an arbitrary subsets of the entities of a grid.
the data associated with is stored in an array.
map from the consecutive, zero-starting index to the data set

.

Mappers can be easily implemented upon the Index Sets and Id Sets.

Example
You will be using the

Dune::MultipleCodimMultipleGeomTypeMapper<GridView>

E ⊆′ E E

D(E)′ E′

I =E′ {0, … , ∣E ∣ −′ 1}
D(E)′

72 / 115

#include <dune/grid/common/mcmgmapper.hh>
...
using GridView = SomeGrid::LeafGridView;

// Layout description
Dune::MCMGLayout layout = [](Dune::GeometryType gt, int griddim) {
 return gt.dim() == griddim;
};

// mapper for elements (codim==0) on leaf
using Mapper = Dune::MultipleCodimMultipleGeomTypeMapper<GridView>;
Mapper mapper{gridview, layout};

// iterate over the leaf
for (const auto& entity : elements(gridview))
{
 int index = mapper.index(entity);
 // iterate over all intersections of this cell
 for (const auto& i : intersections(gridview, entity))
 {
 // neighbor intersection
 if (i.neighbor()) {
 int nindex = mapper.index(i.outside());
 sparsityPattern[index].insert(nindex);
 }
 }
}

73 / 115

Input and Output

74 / 115

Input and Output
We need to provide a grid either by geometric description or loaded from file
Powerful grid generators exist, exporting grids in multiple formats
For the visualization of grid we also need to write the geometry and maybe attached
data in a common file format

In this section:
1. Grid factories
2. Structured grid generation
3. Reading grids from file
4. Writing output to a file

75 / 115

Grid Factories
A grid is a combination of elements, described by their vertex coordinates + a
connectivity of the element nodes.
All Dune grids provide a Grid Factory that allows to create a grid by these two
information

Dune::GridFactor<SomeGrid> factory;

The factory then provides two main methods:

void insertVertex (const FieldVector<ct,dimworld>& pos);
void insertElement (const GeometryType& type, const std::vector<unsigned int>& vertices)

Construct the grid after inserting vertices and element connectivity:

std::unique_ptr<SomeGrid> createGrid ();

76 / 115

Grid Factories

Example
Dune::GridFactory<SomeGrid> factory;

factory.insertVertex({0, 0, 0});
factory.insertVertex({1, 0, 0});
factory.insertVertex({0, 1, 0});
factory.insertVertex({1, 1, 0});
factory.insertVertex({0, 0, 1});
factory.insertVertex({1, 0, 1});
factory.insertVertex({0, 1, 1});
factory.insertVertex({1, 1, 1});

namespace GT = Dune::GeometryTypes;
factory.insertElement(GT::tetrahedron, {0, 1, 3, 7}); // insertion-index 0
factory.insertElement(GT::tetrahedron, {0, 5, 1, 7}); // insertion-index 1
factory.insertElement(GT::tetrahedron, {0, 4, 5, 7}); // insertion-index 2
factory.insertElement(GT::tetrahedron, {0, 6, 4, 7}); // insertion-index 3
factory.insertElement(GT::tetrahedron, {0, 2, 6, 7}); // insertion-index 4
factory.insertElement(GT::tetrahedron, {0, 3, 2, 7}); // insertion-index 5

std::unique_ptr<SomeGrid> gridPtr = factory.createGrid();

77 / 115

Grid Factories
Identify elements in the constructed grid, by insertion-index

unsigned int insertionIndex (const typename Codim<0>::Entity& entity);

Note: The insertion-index might be different from the entity index in the Index Set

Example
auto const& indexSet = gridPtr->leafIndexSet();
for (auto const& cell : elements(*gridPtr))
{
 auto index = indexSet.index(cell);
 auto insertion_index = factory.insertionIndex(cell);

 // in general: index != insertion_index
}

78 / 115

Structured Grid Generation
Some standard Grid Factories exist for rectangular domains

#include <dune/grid/utility/structuredgridfactory.hh>
...
Dune::StructuredGridFactory<SomeGrid>

These structured factories provide static methods to construct cube/simplex grids of a
prescribed domain:

std::unique_ptr<SomeGrid> createCubeGrid (const FieldVector<ct,dimworld>& lowerLeft,
 const FieldVector<ct,dimworld>& upperRight,
 const std::array<unsigned int,dim>& elements);

std::unique_ptr<SomeGrid> createSimplexGrid (const FieldVector<ct,dimworld>& lowerLeft,
 const FieldVector<ct,dimworld>& upperRight,
 const std::array<unsigned int,dim>& elements);

79 / 115

Structured Grid Generation

Example
A domain with 100 elements in x direction and 200 elements in y
direction

using GridType = Dune::UGGrid<2>;
using Factory = Dune::StructuredGridFactory<GridType>;

auto gridPtr = Factory::createCubeGrid({0.0,0.0}, {2.0,4.0}, {100u,200u});

But also simplex elements can be used:

using GridType = Dune::UGGrid<2>;
using Factory = Dune::StructuredGridFactory<GridType>;

auto gridPtr = Factory::createSimplexGrid({0.0,0.0}, {2.0,4.0}, {100u,200u});

Ω = [0, 2] × [0, 4]

80 / 115

Reading Grids from File
External tools like GMsh or ParaView or CAD tools export their grids in a specific file
format. In order to create a Dune Grid from these file, the content needs to be parsed and
a GridFactory can be filled with the vertices and element connectivity.

For some file formats this is already implemented in dune-grid :

GMsh (2.x)
StarCD
DGF
AmiraMesh
AlbertaGrid

With external modules also other formats are supported, e.g., GMsh (4.x) with dune-
gmsh4 and VTK with dune-vtk .

81 / 115

Reading Grids from File

Example
Reading a grid from a GMsh 2.x file

#include <dune/grid/io/file/gmshreader>
...
using Reader = Dune::GmshReader<SomeGrid>;
std::unique_ptr<SomeGrid> gridPtr = Reader::read(<filename>);

82 / 115

Reading Grids from File

Example
Reading a grid from a GMsh 2.x file

#include <dune/grid/io/file/gmshreader>
...
using Reader = Dune::GmshReader<SomeGrid>;
std::unique_ptr<SomeGrid> gridPtr = Reader::read(<filename>);

Some readers provide interfaces to also read data, e.g. with the GMshReader

Dune::GridFactory<SomeGrid> factory;
std::vector<int> boundaryTags;
std::vector<int> elementTags;
Reader::read(factory, <filename>, boundaryTags, elementTags);

std::unique_ptr<SomeGrid> gridPtr = factory.createGrid();

82 / 115

Writing Output to a File
For the visualization of simulation results, you need to write the grid and attached data to a
file. A common output format is VTK.

Dune provides a VTKWriter and also sequence writers for animation files:

#include <dune/grid/io/file/vtk.hh>
...
Dune::VTKWriter<GridView>;
Dune::VTKSequenceWriter<GridView>;

83 / 115

Writing Output to a File
For the visualization of simulation results, you need to write the grid and attached data to a
file. A common output format is VTK.

Dune provides a VTKWriter and also sequence writers for animation files:

#include <dune/grid/io/file/vtk.hh>
...
Dune::VTKWriter<GridView>;
Dune::VTKSequenceWriter<GridView>;

A writer is constructed from a GridView and allows to attach data on the cells or on the
vertices:

void addCellData (...);
void addVertexData (...);

where the argument is something that can be evaluated on the corresponding grid entities:

A container of values with contiguous indexing of the entity values
A localizable function (see later)

83 / 115

Writing Output to a File

Example
Writing a vector of values attached to the grid cells to a file

Dune::VTKWriter writer{gv, Dune::VTK::nonconforming}; // write a non-conforming grid

auto u = std::vector<double>(gv.size(0));
writer.addCellData(u, "c", 1); // vector contains 1 value per cell

writer.write("concentration", "output", ""); // write into the directory output/

84 / 115

Writing Output to a File

Example
Writing a vector of values attached to the grid cells to a file

Dune::VTKWriter writer{gv, Dune::VTK::nonconforming}; // write a non-conforming grid

auto u = std::vector<double>(gv.size(0));
writer.addCellData(u, "c", 1); // vector contains 1 value per cell

writer.write("concentration", "output", ""); // write into the directory output/

A VTKSequenceWriter is constructed with the output location:

Dune::VTKSequenceWriter writer{gv, "concentration", "output", "", Dune::VTK::nonconforming};
writer.addCellData(u, "c", 1);
writer.write(time);

84 / 115

Exercise 3

85 / 115

Exercise 3
The partial differential equation considered in this exercise is the linear transport equation,

The unknown solution is denoted by and the velocity field by . The domain is
some open subset of . For this exercise, we choose d = 2 where intersections are 1-D edges.
The inflow boundary \text{in}Γin is the set of points on the boundary of for which the
velocity vector points inwards.

We want to numerically solve this equation by a cell-centered finite volume scheme. We
discretize the domain by a triangulation and approximate the solution by a
function that is constant on each cell . We denote the value of on a cell by

.

∂ u(x, t) +t ∇ ⋅ (v(x)u(x, t)) = 0 in Ω
u(x, t) = u (x, t) on Γ in in

u(x, t) v(x) Ω
Rd

x Ω
v(x)

Ω T h u

u h T ∈ T h u h T

u T

86 / 115

Exercise 3
Using the explicit Euler time discretization, the scheme can be written as

The notation is as follows: is the area of the cell , the sum runs over all intersections
of with either the boundary or a neighboring cell, is the length of edge , is the
unit outer normal of edge and is the velocity at the center of edge . Finally, denotes the
upwind concentration. If , this is . Otherwise it is either the concentration in the
neighboring cell or given by the boundary condition \text{in}uin , depending on the location of

.

u (t) =T k+1 u (t) −T k ∣e∣u (t)n ⋅
∣T ∣

t − t k+1 k

e∈∂T

∑ e
k T

e v .e

∣T ∣ T e

T ∣e∣ e n T
e

e ve e ue

n ⋅T
e v >e 0 u T

e

87 / 115

Exercise 3
For the concrete setup, consider:

Grid with 100 elements in each directionΩ = [0, 1] × [0, 1]

 withu (t) =T 0 u (center(T))0

u (x) =0 {
1
0

if ∥x − (0.15, 0.15)∥ ≤ 0.05∞

otherwise

Velocity v = (1, 1)

Boundary condition u =in 0

Time interval with timestep size with the grid size.t ∈ [0, 1] t −k+1 t =k 0.5 ⋅ h h

88 / 115

