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Abstract

Robert Burch describes in (Burch 1991) the Peircean Algebraic Logic (PAL)
as a language to express Peirce’s “unitary logical vision” (p. 3), which Peirce
tried to formulate using different logical systems. A “correct” formulation of
Peirce’s vision then should allow a mathematical proof of Peirce’s Reduction
Thesis, that all relations can be generated from the ensemble of unary, bi-
nary and ternary relations, but that at least some ternary relations cannot be
reduced to relations of lower arity.

Based on Burch’s algebraization, the authors further simplified the math-
ematical structure of PAL and removed a restriction imposed by Burch, mak-
ing the resulting system in its expressiveness more similar to Peirce’s system
of existential graphs. The drawback however was that the proof of the Re-
duction Thesis from (Burch 1991) did no longer hold. A new proof has been
introduced in (Hereth Correia and Pöschel 2006) and was published in full
detail in (Hereth 2008).

In this paper, we give provide the proof of Peirce’s Reduction Thesis using
the graph notation similar to Peirce’s existential graphs.

1. Introduction

The task to algebraize a logic system such as Peirce’s is not an easy one. Espe-
cially the connection to the underlying philosophy or “logical vision” makes
every decision how to formalize some aspect prone to discussion and possible
disagreement. However, the algebraization of Peirce’s logical vision by Burch
(1991) has not evoked much disagreement; Zeman (1995) calls this work “a
major contribution to communication between what could be called Peircean
logic and the more ‘traditional’ approach based on the work of Frege, Peano,
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and Russell.” As mathematicians the authors are socialized and trained in the
notations coming from this ‘traditional’ approach. Our approach concentrates
on a formalization of the logic system presented by Burch in a way analogous
to other relational systems known in mathematics, in particular to relational
algebras. On the one hand this allows to directly use the fundamental opera-
tions introduced by Burch, on the other hand we have two major differences:
we do not distinguish interpretations and enterpretations of graphs which sim-
plifies the treatment but probably ignores some philosophical aspects. Also,
we allow more freedom of construction, making the system thus a bit more
similar to the system of existential graphs. We will highlight this second dif-
ference later in the paper.

Before we present our model, we have to clarify the notion of relation.
Let us consider the statement “John loves Mary”, which Peirce (1870) called
a relative term. While this statement may describe a relation as understood in
common language, it is here considered to be only an instance of the relation.
That is, the relation is “love(s)” and the pair (John, Mary) is an element of this
relation. The order of the objects which are put into relation is also of impor-
tance. Clearly, it does not follow from the above statement that Mary loves
John, so the pair (Mary, John) is not necessarily an element of the relation.

For our more abstract considerations, we replace concrete objects (or per-
sons) by abstracts elements which will be denoted by variables such as x or
y, which are chosen from some set A. In the following we assume that A
has at least two elements. An ordered sequence of elements such as (x,y) or
(x1, . . . ,xn) for some natural number n will be called pair (or binary tuple) or
n-ary tuple respectively. The relations will be denoted by greek letters such
as ρ . Formaly, a relation is a subset of An for some natural number n, that
means all tuples in a relation are of the same arity. The relation is then called
an n-ary relation (or unary if n = 1, binary if n = 2 and ternary if n = 3).
It is therefore not possible that a pair (v,w) and a triple (x,y,z) both belong
to the same relation. If a tuple belongs to a relation we designate this by ∈,
for instance (x,y) ∈ ρ . As usual in mathematics, we treat relations as sets
and use the normal operations on sets. If ρ and σ are binary relations, then
(x,y) ∈ ρ ∪σ means that the pair (x,y) is an element of ρ or of σ (or of both
relations), and (x,y) ∈ ρ ∩σ means that (x,y) is element of both relations.
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2. Operations of Peircean Algebraic Logic

In this section we will present the basic ingredients of the Peircean Algebraic
Logic (PAL). On the one hand there is the operational aspect, that is the op-
erations and their interpretation, on the other the diagramatical aspect, the
representation of the graphs.1

We assume that the reader is familiar with the interpretation of existential
graphs, which can be applied to the diagrams in this paper. We only want to
remark a technicality introduced for the translation between the graphs and
the usual mathematical notation of relations.

As Burch does with the graphical syntax in (Burch 1991, chap. 11) we add
numbers to the ends of arcs to number the places of the relation. In the most
simple case of a single relation vertex the standard enumeration of the arcs
corresponds to the places of the relation itself (denoted by the smaller num-
bers directly at the vertex), see for instance the left example in Fig. 1. A pair
(x1,x2) belongs to the interpretation of this graph if (x1,x2) is an element of
ρ . If ρ is the relation “loves” and John loves Mary, then (John, Mary) is an
interpretation of the left graph. It is also possible to renumber the places, as
can be seen in the right example. Using the same example, then (Mary, John)
would be an interpretation of the right graph (but (John, Mary) not neces-
sarily), that is the graph would represent the relation “is loved by”. For any
graph G the set of all tuples belonging to its interpretation is denoted by GA.

ρ1 21 2 ρ1 22 1

Figure 1. Simple (atomic) graph with numbered and renumbered places

To denote an arbitrary graph with n places, we will use the cloud icon as
seen in Fig. 2. We will use this to show constructions of graphs without recur-
ring on their particular structure. The cloud may be replaced by an arbitrary
graph.

Now, we will present the PAL-operations in the same order as in (Hereth
Correia and Pöschel 2006). Let G and H be graphs and ρ and σ their respec-
tive interpretations. Let G and consequently ρ have m places, and let H and
σ have n places.

(PAL1) The product of two graphs is represented by putting the graphs next
to each other, see Fig. 3. The places of the second graph are shifted
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5. . .n

Figure 2. Example of the representation of an arbirtrary graph

by m. The corresponding term is written G×H. The interpreation of

G1

2
3

4. . .
m

H�1m + 1

�2m + 2 �3m + 3

�4m + 4

�5m + 5. . .�nm + n

Figure 3. Product of G and H.

the product is the cross-product of the interpretations:

ρ×σ := {(x1, . . . ,xm,y1, . . . ,yn) | (x1, . . . ,xm)∈ ρ,(y1, . . . ,yn)∈ σ}.

(PAL2) The Join-operation allows to connect two places i and j
(1≤ i < j ≤ m) of a graph and is denoted by δ i, j(G) and can be
represented as in Fig. 4. The interpretation of this operation is to re-
tain only tuples which have the same value at the places i and j and
to remove these two places. Formally, this can be written as follows:

δ
i, j(ρ) :={(x1, . . . ,xi−1,xi+1, . . . ,x j−1,x j+1, . . . ,xm) |

∃y ∈ A : (x1, . . . ,xi−1,y,xi+1, . . . ,x j−1,y,x j+1, . . . ,xm) ∈ ρ}.

(PAL3) The complement is depicted by a (slightly thicker) oval (see Fig. 5)
around the graph and denoted by ¬G. The interpretation of this op-
eration is the set-semantic complement, the set of all m-tuples which
do not belong to the interpretation of G:

¬ρ := {(x1, . . . ,xm) ∈ Am | (x1, . . . ,xm) /∈ ρ}.
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m

Figure 4. Join of places i and j of graph G.

G1

2
3

4
m

Figure 5. Complement of graph G.

(PAL4) The permutation operation allows to change the order of the places.
Let α be a bijective mapping on {1, . . . ,m}, that is every element is
mapped to some element, but no two elements to the same. Then we
define

πα(ρ) := {(x1, . . . ,xm) | (xα(1), . . . ,xα(m)) ∈ ρ}.

The diagrammatic representation is shown in Fig. 6.

G
α(1)

�1

α(2)

�2 �3 α(3)

�4 α(4)
�m

α(m)

Figure 6. Applying the permutation α on graph G.



6 J. Hereth and R. Pöschel

(PAL5) The last operation of PAL is not an operation in the common sense,
but in the mathematical one. It is the constant teridentity, denoted by
Id3. Its interpretation is defined by

id3 := {(x,x,x) | x ∈ A}.

As the enumeration of the places is not important (id3 is invariant un-
der any permutation of places), it is represented without numbering
the places, as shown in Fig. 7.

Figure 7. Representation of the teridentity.

In the following, we will investigate, what relations can be constructed
by these operations or some of these operations. Let Q be a set of relations.
Then 〈Q〉PAL is the set of relations that can be generated applying any finite
sequence of PAL-operations on these relations. We will also investigate the
subset 〈Q〉PAL− of all relations that can be generated using all operations ex-
cept teridentity. Formally, Peirce’s Reduction Thesis can be stated as follows:
let Q be the set of all unary and binary relations, then independently from the
underlying set A the set 〈Q〉PAL− is a strict subset of 〈Q〉PAL.

Burch (1991) introduces an operation join2, which allows the product
of two relations if they are joined directly after, that is δ i, j(ρ × σ) with
1 ≤ i ≤ m < j ≤ m + n for an m-ary relation ρ and an n-ary relation σ . He
allows to generate relations using this operations in addition to join, comple-
ment, permutation and teridentity. Then, in a second step, the product of these
relations may be generated. Our modified version of PAL is a simplification
of this two-step process (allowing the product any time in the construction
process) and allows to generate graphs which could not be generated with the
original PAL. This makes the main part of Peirce’s Reduction Thesis (Sec-
tion 6 in this paper), that not all relations can be generated if no ternary rela-
tions are available, more difficult.

Of course, any algebraization of Peirce’s logic system in general and the
system of existential graphs in particular, is prone to errors due to misinter-
pretations. The algebraization presented here builds on the diligent work of
Robert Burch, any errors introduced by further simplifications are of course
our faults.
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3. Generating all Relations

In this section we discuss the first part of Peirce’s reduction thesis, that all
relations can be generated from ternary relations. At first, ternary relations
seem rather complicated as basic building blocks for arbitrary relations. But
we can easily see, that unary and binary relations can be constructed from
ternary relations. Let ρ be an unary relation, we define ∆A := {(x,x) | x ∈ A}
(this is the binary identity on A) and τ := ρ ×∆A. As ρ is unary and ∆A is
binary, we have τ as a ternary relation from which we can reconstruct ρ via
ρ = δ 2,3(τ).

Similarly, we can generate all binary relations from ternary ones. Let ρ

now be an arbitrary binary relation and let us consider A = {x | x ∈ A} as
unary relation. We defin τ := ρ×A and get δ 3,4(δ 5,6(τ× id3)) = ρ .

As we can generate any unary and binary relation from ternary ones, we
will in the following use these as basic building blocks. Next we consider
arbitrary n-ary relations with n≥ 4. Let us start with a simple case, we assume
additionally that ρ is finite. Then we can enumerate the tuples from 1 to m
and write ρ = {(x11, . . . ,x1n), . . . ,(xm1, . . . ,xmn)}.

In the simplest case (m = 1) we have ρ = {x11}×·· ·{x1n}. Each element
can be considered as a one-element unary relation, hence we can write ρ as
the product of n unary relations (see Fig. 8).

ρ1

2

n

1

2

n

=

{x11}11 {x12}
1
2

{x1n}
1
n

Figure 8. Generating the n-ary singleton relation ρ from unary singleton relations.

Now let ρk define the relation consisting of the first k tuples from ρ , that
is ρk := {(x11, . . . ,x1n), . . . ,(xk1, . . . ,xkn)}. As we have just seen, we can con-
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struct ρ1 from unary relations. Having ρk−1, we can construct ρk using the
PAL-operations as shown in Fig. 9. The graph may seem very complex at
first, but it is composed of simple structures. In the upper inner oval we rec-
ognize a graph very similar to the lower one in Fig. 8. We can consider the
graph enclosed by the upper oval as the n-ary singleton relation containing
only the tuple (xk1, . . . ,xkn). The overall form of the two negation ovals en-
closed by an outer negation is probably well-known to readers familar with
Peirce’s existential graphs. In his α-graphs, they represent disjunction. If G
is the (α-)graph enclosed by the upper inner oval and H the other graph, than
the logical interpretation is ¬(¬G∧¬H) = G∨H. The relational interpreta-
tion of the graph in Fig. 9 is the union of the two relations (we have to connect
corresponding places with teridentity-nodes, resulting in a more complicated
looking diagram than the corresponding for α-graphs). The interpretation of
this graph is therefore {(xk1, . . . ,xkn)}∪ρk−1 = ρk. We assumed ρ to be finite
with m elements, therefore we can construct ρ in m steps (that is ρm = ρ) us-
ing unary relations and PAL-operations (teridentity being the constant PAL-
operation). Together with the considerations at the beginning of this section
we have shown, that any finite relation can be constructed from ternary rela-
tions with PAL-operations.

{xk1}1 {xk2}
1

{xkn}
1

ρk−11

2

n

1

2

n

Figure 9. Union of the relation ρk−1 ⊆ ρ and the singleton relation {(xk1, . . . ,xkn)}⊆
ρ .

However, this construction does not work for infinite relations.2 But in
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this case there exists a one-to-one mapping between the elements of A and the
elements of A×A. Let µ : A×A→ A be such a mapping. Then we can replace
the quaternary relation ρ by the ternary relation ρ ′ := {(x1,x2,µ(x3,x4)) |
(x1,x2,x3) ∈ ρ} and generate ρ from ρ ′ and µ (more precisely the graph of
µ , that is the ternary relation {(x1,x2,x3) ∈ A3 | µ(x1) = (x2,x3)}, but for this
article we will identify the mapping and its graph) using the injectivity of µ

(µ(a) = µ(b) ⇐⇒ a = b), as shown in Fig. 10).

ρ
1

2 3

4

1

2 3

4

= ρ
1

2 3

4

1

2 3

4

= ρ
1

2 3

4

µ
1

2

3 µ
1

2

3

1

2 3

4

= ρ′

1

2

3 µ
1

2

3

1

2 3

4

Figure 10. Constructing the quaternary relation ρ from the ternary relations ρ ′ and µ .

Having shown how to construct quaternary relations from ternary rela-
tions the generalization is simple. Let us assume we can construct any n-ary
relation and want to construct some n + 1-ary relation ρ . According to our
assumption we can construct the n-ary relation

ρ
′ := {(a1, . . . ,an−1,µ(an,an+1)) | (a1, . . . ,an+1) ∈ ρ}.

Using the same approach as before we can construct ρ from this (constructable)
n-ary relation ρ ′ and µ (see Fig. 11).
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ρ

1
2

n-1 n

n+1

1

2

n− 1 n

n + 1

= ρ

1
2

n-1 n

n+1

1

2

n− 1 n

n + 1

= ρ

1
2

n-1 n

n+1

µ
1

2

3 µ
1

2

3

1

2

n

n + 1

n− 1

= ρ′

1

2

n-1

n µ
1

2

3

1

2

n− 1 n

n + 1

Figure 11. Constructing the n + 1-ary relation ρ from the n-ary relation ρ ′ and the
ternary relation µ .

4. Representations of Relations

In the last section we have shown that in PAL we can construct all relations
from ternary relations. However, this is only one part of the reduction thesis.
The more difficult part is to show that we actually need ternary relations, that
is we cannot construct all relations from unary and binary relations alone, not
using teridentity.

To show this, we introduce in this section a special representation of re-
lations by sets of graphs. This representation is basically a normalization,
analogous to the disjunctive normal form known from formulas in propo-
sitional or predicate logic. We will show, that for any set Q of graphs the
interpretation of any graph G from 〈Q〉PAL can be represented by the union
of intersection of the interpreations of graphs constructed from Q∪{id3}.

To make those notions more clear, we will formally introduce represen-
tations. Mathematically, a representation is a set of sets of graphs together
with a given arity n, such that each graph has only places from 1 to n (but
not necessarily all of them). To illustrate this definition, we give an advanced
example in which we will construct a graph using all of the PAL-operations
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and explain in each step how to construct or adapt the representation.
If the graph G is atomic, that is an element of Q or if it is the teridentity,

the graph is trivially a (connected) representation of itself, more precisely we
have R := {{G}} as the representation and of course GA =

⋃{⋂{HA | H ∈
S} | S ∈R}.

Building the product of two graphs G and H with the arities m and n, we
have to adapt the numbering of the places for the second graph (adding m to
each place) and to assure that a tuple belongs to the interpretation if and only
if its projection to the first m places belongs to the interpretation of the first
graph and its projection to the last n places belongs to the interpretation of the
(adapted) second graph. We now proceed to formally describe the new repre-
sentation. Let RG be a representation of G and RH a representation of H. For
a graph T in the representation of H let T +m denote the graph resulting from
adding m to the places of T . For instance, if G is the binary relation ρ and H
is the unary relation σ then σ is represented by itself (that is {{σ}}) and σ+2

would be the lower graph in Fig 12. In this simple case, the representation
is shown as the product of the graphs. In the following, the representation
of a graph will be visualized as a row of columns, each column representing
one set of the representation, the graphs of the set ordered vertically in the
column.

ρ1
2

σ
1

1

2

3

Figure 12. Product (and representation of the product) of two atomic graphs.

In the case of multiple columns this constructions becomes more compli-
cated, we build the union of each set from the first representation with each
set of the second representation (with adapted places). Formally, we define
the new representation R by

R := {A∪{T +m | T ∈ B} | A ∈RG,B ∈RH}.
A tuple t belongs to the product of the interpretations of G and H if and

only if there are sets A ∈RG and B ∈RH such that the projection to the first
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m places belongs to the interpretation of A (that is for each graph T ∈ A the
projection of t to the places appearing in T belongs to the interpretation of
T ) and the projection of t to the last n places belongs to the interpretation
of B. Now it is easy to verify, that this is equivalent to the above condition,
that the projection of t to the places appearing in each T ∈ A belongs to the
interpretation of T (this is exactly the same condition) and that the projection
of t to the places appearing in T +m belongs to the interpretation of T +m for
each T ∈ B (this is the condition from above, just shifting the places). This
shows, that the formally given representation is indeed a representation of the
product of the two graphs.

ρ1
2

σ
1

1

2

3

= ρ1
2

1

2
σ
1

3

Figure 13. Complement of the graph in Fig. 12 and its representation.

The calculation of the complement of a graph is more complicated. Let
again G be a graph and R a corresponding representation. To calculate a rep-
resentation of ¬G we apply the laws of DeMorgan and the distributivity of
union and intersection of sets. The latter is probably well-known to the reader
in the case of the intersection of two unions of two sets, but might not be ap-
parent in the more general notation used below. Applying distributivity to
the intersections of multiple unions means that we have to intersect over all
possible choices from the unions. Mathematically, such a choice is modeled
by a choice function, that is a function χ from the set of sets to the union
of all these sets such that χ(A) ∈ A for each set A. To adapt this idea to our
application, let us consider the expression

⋂{⋃{(¬T )A | T ∈ A} | A ∈ R}.
Then our choice function χ is a mapping from R to

⋃
R with χ(A) ∈ A

for each A ∈R. Let XR be the set of all those choice functions. Distributiv-
ity then allows us to see that the above equation is (extensionally) equal to⋃{⋂{(¬T )A | T ∈ χ(R)} | χ ∈ XR}.

Let t be a tuple. Then we have
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t ∈ (¬G)A ⇐⇒ t /∈
⋃
{
⋂
{T A | T ∈ A} | A ∈R}

⇐⇒ t ∈
⋂
{
⋃
{(¬T )A | T ∈ A} | A ∈R}

⇐⇒ t ∈
⋃
{
⋂
{(¬T )A | T ∈ χ(R)} | χ ∈ XR}

Consequently {χ(R)} | χ ∈ XR} is a representation of the complement
of G. If R is as simple as in Fig. 12, then there are not many choice functions;
as there is only one set to choose from, there are only as many possibilities as
elements in this set, in our example only two. The result can be seen on the
right side in Fig. 13.

ρ1
2

σ
1

τ
1

21

2

3

4

5

Figure 14. Product of the graph from Fig. 13 and an atomic graph.

In the next step we see a slightly more complicated case of the represen-
tation of a product. Fig. 14 shows the product of the previous graph with an
atomic graph. Because the representation of the previous graphs has two sets
and the atomic graph’s representation contains one set the result is a repre-
sentation with two sets (see Fig.15). The only graph in the only set of the
atomic graphs representation (the graph itself) appears consequently in every
column.

The next operation is the join between the second place of the ρ-relation
and the first place of the τ-relation. Looking at the result in Fig. 17 we see
that it is easy to construct the representation if both places belong to graphs
in the set, the respective places are joined. In the second column there is
no graph with the ρ-relation, consequently we cannot join the two places.
Instead the existing place of the τ-relation is joined with the unary relation
A (represented by the teridentity with two joined places). For a set of the
representation where neither place belongs to any graph nothing is changed.

To describe this transformation more formally we introduce an additional
notation; i ∈ T denotes that place i appears in the graph T and consequently
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ρ1
2

1

2

τ
1

2

4

5

σ
1

3

τ
1

2

4

5

Figure 15. Representation of the product shown in Fig. 14.

ρ1
2

σ
1

τ
1

21

�3
2

�5 3

Figure 16. Join of the two places 2 and 4 of the graph from Fig. 14.

i ∈ ⋃
R denotes that i appears in some graph in the set R. Now let R be the

representation of the graph G with arity n for which we want to construct
the representation of δ i, j(G). For some set R ∈R with i, j /∈ ⋃

R we define
δ i, j(R) := R. If one of the places appears in multiple graphs of R we have
first to combine them, connecting the edges belonging to the same place with
teridentity graphs. Formally, we define the meet of two graphs T and S of the
representation; to simplify the notation in the following algorithm we assume
in the products the places of T numbered from 1 to n and the places of S num-
bered from n + 1 to 2n (even if possibly not all places actually appear) and
the places of the teridentity in the second product numbered from 2n + 1 to
2n+3. Deviating from the usual operation we assume the places not renum-
bered after the join, that is we identify the places by the numbers associated
after building the product, not changing the numbering.
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X ← (T ×S)
for p ∈ {1, . . .n} where place p appears in T and S

do X ← δ p,2n+1(X× id3)
X ← δ n+p,2n+2(X× id3)
X ← α(p,2n+3)(X) � Renaming the remaining place of the

teridentity to the original place p.
for p ∈ {1, . . .n} where place p+n appears in X

do X ← α(p,n+p)(X) � Reshifting places originally from S
return T ∩S := X

Note that the result of this operation is again of arity n despite the in-
termediate doubling of arity. It is easy to verify that the interpretation of
T ∩S is indeed the intersection of the interpretations of T and S respectively.
Using this derived operations we can denote the combination of all graphs
where the place i appears by Ti :=

⋂{T ∈ R | i ∈ T}. Analogously, we create
Tj :=

⋂{T ∈ R | j ∈ T}.
To represent the result of the join operation we have to accomodate the

changed numbering of the places. Let α
Ci

denote the renumbering induced by
the permutation (n,n− 1, . . . , i), and α

Cj
correspondingly induced by (n,n−

1, . . . , j). The combination of these two operations α
Cj
◦α

Ci
reduces the number

of the places between i and j by one and the places greater than j by two; the
places i and j are pushed to the end.

We will define the transformation of the graphs of a set R in the represen-
tation depending on the appearance of i and j in

⋃
R. If neither appears then

we have only to accomodate the changed numbering of the places. We define
δ i, j(R) := {α

Cj
◦α

Ci
(T ) | T ∈ R}.

If i ∈ ⋃
R but j /∈ ⋃

R we have two cases; if i /∈ T we renumber the
places as before; otherwise we have to assure that there is some a ∈ A such
that some tuple with a at place i belongs to the interpretation of R. This is
done by joining place i of the graph Ti with the unary relation A = δ 2,3(id3).
This removes place i and we only have to accomodate the shift for remov-
ing the place j. We get in this case δ i, j(R) := {α

Cj
◦ α

Ci
(T ) | T ∈ R , i /∈

T} ∪ {α
Cj
(δ i,n+1(Ti× δ 2,3(id3)))} . Analogously if i /∈ ⋃

R and j ∈ ⋃
R we

define δ i, j(R) := {α
Cj
◦α

Ci
(T ) | T ∈ R , j /∈ T}∪{α

Ci
(δ j,n+1(Tj×δ 2,3(id3)))}.

In the fourth case, i, j ∈ ⋃
R, we join Ti and Rgraph[T ] j with each other,

that is δ i, j(R) := {α
Cj
◦α

Ci
(T ) | T ∈ R , i, j /∈ T}∪{δ i, j(Ti∩Tj)}.

In each of the four cases it is easy to see that
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(x1, . . . ,xn−2) ∈
⋂
{T A | T ∈ δ

i, j(R)}
⇐⇒

∃a ∈ A : (x1, . . . ,xi−1,a,xi,xi+1, . . . ,x j,a,x j+1, . . . ,xn−2) ∈
⋂
{T A | T ∈ R}.

Consequently, if R is a representation of G then {δ i, j(R) | R ∈ R} is a
representation of δ i, j(G), its arity being n−2.

ρ1
2

τ
1

21 3 σ
1

2

τ
1

2 3

Figure 17. Representation of the graph in Fig. 16.

In our simple example only two of the four possible cases occur. In the
first set (left column) both places appear. Because there is only one graph per
place containing this place, the graph Ti and Tj correspond to the upper and
lower graph in the first column in Fig. 16 which are then joined to provide the
single graph in the first set of the new representation. In the right column we
see the third case, j = 4 appears in the lower graph of the second column in
Fig. 16, but no place i = 2. Therefore the places of the upper graph are simply
renumbered, the place of the lower graph is connected to the unary relation A
and the remaining place renumbered. The result can be seen in Fig. 17.

After this most complicated operation the renumbering of places itself
is trivial. If some renumbering α is applied to G then we apply the same
operation to each graph of the representation, that is if R is a representaiton
of G then {{α(T ) | T ∈ R}R ∈R} is a representation of α(G).

In our example we renumber the places such that the place attached to
the σ -vertex is again numbered 3. The graph is shown in Fig. 18 and the
corresponding representation in Fig. 19.
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σ
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τ
1

21

�3
�2
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�5 �3 2

Figure 18. Renumbering the places of the graph from Fig. 16.
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3

τ
1

2 2

Figure 19. Representation of the graph in Fig. 18.

The last step for our example will be a second complement. As for the
second time the product operation was performed, this case is slightly more
complicated. Instead of one single possibility to choose from the sets of the
representation there are now two (which equals the product of the cardinali-
ties of the sets). As there is only one graph in the first set (left column) of the
representation in Fig. 19, this graph appears in all columns in the representa-
tion shown in Fig. 21, where the final result can be seen.

This example also shows that it is necessary to investigate the possibility
that a place appears multiple times in a set of the representation. Place 2
belongs to both graphs in the first set of the last representation, but we cannot
eliminate one of these graphs. We could eliminate one if we knew that the
interpretation of one were a subset of the interpretation of the other, but this
will in general not be the case.
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ρ1
2

σ
1

τ
1

21 2

3

Figure 20. Complement of the graph from Fig. 18.
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3

Figure 21. Representation of the graph in Fig. 20. Note that place 2 appears twice in
the left column.

5. The Crux Lemma

In the last section we have shown how we can represent the interpretation of
a graph by a kind of normal form, similar to the disjunctive normal form from
propositional logic. This is an important step for the proof of the reduction
thesis but not yet sufficient. First of all, the construction of the representation
depends on the teridentity. This ternary relation is only used in constructing
the representation of a graph after the join operation but by using it we cannot
find a representation using unary and binary relations only (even if all atomic
relations are unary or binary), which we need to prove the reduction thesis.
Secondly, even if we can avoid the teridentity and have only unary and binary
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relations in the representation, this still does not mean that we can prove the
reduction thesis: if A is finite than we can represent teridentity as the union
of its tuples and each tuple can be represented as the intersection of three
unary singleton relations; if we denote by a(i) for some element a ∈ A the
graph with a single vertex labeled by the unary relation {a} and attached to
the place i (with i ∈ {1,2,3}), then the teridentity on A can be represented by
{{a(1),a(2),a(3)} | a ∈ A}. No ternary relation needed. This means we have
also to prove that such a representation cannot result from applying the con-
structions from the previous section.

The tool to solve these two issues is the core of binary relations. It turns
out that we cannot prove that the relations attached to a certain place are
not necessarily comparable to each other, but that if we use only unary and
binary relations for the construction then at most one binary graph can ap-
pear attached to this place in the representation of the graph and that the core
(which we will define shortly) of the interpretation of this binary graph is
comparable to the interpretation of any unary graph appearing in the repre-
sentation attached to the same place. Together with the property shown in the
Crux Lemma we can then show that the interpretations of graphs constructed
from unary and binary relations can never be the teridentity on A.

The core of a binary relation ρ is defined by Cor(ρ) := {c∈ A | ∀a,b∈ A :
(a,b) ∈ ρ =⇒ (a,c) ∈ ρ}. This can of course alo be represented by a graph,
as shown on the left in Fig. 22. On the right of the same figure you see the
graph for ¬Cor(¬ρ), the complement of the core of the complement of ρ . To
define when two relations are comparable, these two sets will be needed.

ρ1 2

ρ1 2

2
ρ1 2

ρ1 2

2

Figure 22. The core of the binary relation ρ represented as a graph on the left
(Cor(ρ)) and the complement of the core of the complement of ρ on the
right (¬Cor(¬ρ))..

The notion of comparability is only defined for unary and binary rela-
tions. Two unary relations are called comparable, if the one is contained in
the other (or vice-versa, obviously). Two binary relations are comparable if
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they are equal (that is, two different binary relations are not comparable even
if one is (strictly) contained in the second). The core of a binary relation will
be considered for comparing unary and binary relations. Let ρ be a binary
relation and σ a unary relation. Than these two relations are called compa-
rable if σ is contained in the core of ρ or the complement of the core of the
complement of ρ is contained in σ . Investigating the last definition of com-
parability we see that the unary and the binary relation are compared with
respect to the second place. If the comparision should be based on the first
place we simply replace ρ by ρ−1 in the above conditions. If the unary rela-
tion σ and the binary relation ρ−1 are comparable we say that ρ and σ are
inverted comparable.

The crucial instrument for the proof of Peirce’s reduction thesis is the Crux
Lemma, depicted in Fig. 23 where two configurations are shown. In the upper
part we see that the relations ρ1, ρ2, σ1 and σ2 are connected, in the lower
part every possible pair of these four relations is connected. It is important
to note that we need a more than binary relation (a 4-identity) to represent
the upper configuration but only the unary and binary relations in the lower
part. The only connection between the four parts of the lower configuration
is by the places. For the interpretation in the sense of a representation the
same value has to be used for each place. Also it is easy to see that the upper
configuration implies the lower one. When there is an element to be put at the
center of the cross configuration we can use this element at the connection of
each of the four parts of the lower configuration. This holds universally for
any relations ρ1, ρ2, σ1 and σ2.

The converse requires that the relations stand in a certain connection –
namely comparability. If ρ1 and ρ2 are comparable and σ1 and σ2 are inverted
comparable, then we can deduce from the lower configuration the upper one.

The proof of this lemma has been presented in Hereth Correia and Pöschel
(2006) in the usual mathematical notation. In this paper we will present the
proof using the notation of existential graphs and the calculus of β -graphs.3

We have to consider several cases because comparability has two directions
resulting in four cases (two for the ρ- and σ - relations each) some of which
have to be divided into subcases.

Let us look at the first case, shown in Fig. 24. There are some parts drawn
with straight lines, directly derived from the premise (the lower configura-
tion); the two graphs at the bottom with ρ2 and σ2 are derived from the upper
two or lower two graphs in the left column of the lower configuration in
Fig. 23, the part with ρ1 and σ1 is a copy of the corresponding graph from the
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ρ21 2 σ21 2
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1

1 2

⇐⇒

1

1 2
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ρ21 2

ρ1

1

ρ21 2 σ21 2

σ1

1

σ21 2

ρ1

1

σ1

1

Figure 23. The Crux Lemma for comparable relations ρ1 and ρ2 and inverted com-
parable relations σ1 and σ2.

premise (at the right side) and the two graphs enclosed in cuts are the case
we consider: that ρ1 is a subset of the core of ρ2 and σ1 a subset of the core
of σ

−1
2 (compare with Fig. 22). The rules of the calculus allow us to con-

nect graphs on the sheet of assertion with graphs enclosed by a cut (the wavy
lines), then we can deiterate copies of graphs enclosed in the cuts (original

ρ21 2

ρ21 2

ρ1

1

σ21 2

σ21 2

σ1

1

ρ1

1

σ1

1

ρ21 21 σ21 2 2

Figure 24. Proof of the Crux Lemma for the case ρ1 ⊆ Cor(ρ2) and σ1 ⊆ Cor(σ2).
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and copy are surrounded and connected by a dashed line, the erased copy is
marked by diagonal lines in noth-east-direction) and finally the deletion rule
allows to remove some parts on the sheet of assertion (this time marked by
diagonal lines in south-east-direction). Looking at the remaining parts and
ignoring the double cuts we see that we arrived at the upper configuration,
hence the proof for this case is complete.

ρ21 2

ρ21 2

ρ1

1

ρ1

1

σ1

1

ρ21 21

σ21 2 2

Figure 25. Proof of the Crux Lemma for the case ρ1 ⊆ Cor(ρ2) and
∀x ∈ A : (x,b) ∈ σ2, where b is the value assigned to place 2.

The second case to consider is that ρ1 is again a subset of the core of ρ2
and the complement of the core of ¬σ2 is a subset of σ1. This case has to be
divided into two subcases. The first subcase is that for any x∈ A the pair (x,b)
is an element of σ2 where b is the value assigned to the second place (note
that by the definition of the representation the same value has to be assigned
to the second place in both graphs of the lower configuration in Fig. 23 where
place 2 appears and correspondingly in the upper configuration). This situa-
tion is shown in Fig. 25. We see that the core-condition for the σ -relations
does not appear. Adding the wavy line from the ρ1-σ1-graph to the part repre-
senting the subcondition mentioned above we get on the right side (ignoring
the double cut) the same graph as in the upper configuration. The left part is
identical to the previous case and we can hence apply the same argumenta-
tion there. Again we arrive after applying the rules of the calculus at the upper
configuration and have proven the first subcase of the second case.

For the second part of the second case (see Fig. 26) we have on the left side
again the same situation as for the first case. Instead of the ρ1-σ1-graph from
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the lemma’s premise we now use the ρ1-σ2-graph and need both the case’s
premise that the complement of the core of the complement of σ2 is a subset
of σ1 (denoted by the large oval at the bottom of the figure) and the negation
of the previous subcondition, that is now there is some element x such that
(x,b) is not an element of σ2 (the part marked by diagonal lines in south-
east-direction at the right side of the figure). Given this initial situation we
can again apply the rules of the calculus and arrive at the upper configuration.
Now both subcases of the second case are finished.

The third case, that the complement of the core of ¬ρ2 is a subset of ρ1
and σ1 is a subset of the core of σ2 is simply the inversion of the second case
and can be handled completely analogously.

The fourth and last case is that ρ1 contains the complement of the core of
¬ρ2 and σ1 contains the complement of the core of ¬σ

−1
2 . On the one hand

this is the most complicated case because we have to consider four subcases,
on the other hand these four proofs are just recombinations of proof parts of
the previous cases. Figures 27–29 show these proofs (as for the third case the
third subcase here is omitted because it is analogous to the second subcase in
Fig. 28).

ρ21 2

ρ21 2

ρ1

1

σ21 2

σ21 2

σ21 2

σ21 2

σ1

1

ρ1

1

ρ21 21

2

Figure 26. Proof of the Crux Lemma for the case ρ1 ⊆ Cor(ρ2), ¬Cor(¬σ
−1
2 ) ⊆ σ1

and ∃x ∈ A : (x,b) /∈ σ2 (where b is the value assigned to place 2).
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ρ21 2 σ21 2

ρ1

1

σ1

1

1 2

Figure 27. Proof of the Crux Lemma for the case that ∀x ∈ A : (a,x)∈ ρ2, (x,b) ∈ σ2
where a is the value assigned to place 1 and b the value assigned to
place 2.
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σ21 2 2

Figure 28. Proof of the Crux Lemma for the case ¬Cor(¬ρ
−1
2 ) ⊆ ρ1 and∃x ∈ A :

(a,x) /∈ ρ2 and ∀x ∈ A : (x,b) ∈ σ2 where a is the value assigned to place
1 and b is the value assigned to place 2.

6. Proof of Peirce’s Reduction Thesis

In the previous section we have investigated the Crux Lemma which gives
us (under special circumstances) an equivalence between a graph including
a more than binary relation and a set of graphs constructed only from unary
and binary relations. In this section we will use this lemma to show that any
graph constructed from a set Q of unary and binary relations not using teri-
dentity, that is any graph from 〈Q〉PAL− , has a representation consisting of
sets of unary and binary graphs from 〈Q∪{A}〉PAL− . These representations
then allow us to show that the teridentity cannot be generated using unary and
binary relations alone, thus proving Peirce’s Reduction Thesis.
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Figure 29. Proof of the Crux Lemma for the case ¬Cor(¬ρ2) ⊆ ρ1,
¬Cor(¬σ

−1
2 )⊆ σ1 and ∃x,y ∈ A : (a,x) /∈ ρ2,(x,b) /∈ σ2 where a is

the value assigned to place 1 and b the value assigned to place 2.

We have to make the claim about the representations more precise: Let Q
be a set of unary and binary relations. Then any graph in 〈Q〉PAL− has a rep-
resentation consisting of finitely many finite sets such that any graph of the
representation is a unary or binary graph from 〈Q∪{A}〉PAL− ; the interpreta-
tions of any two graphs attached to a common place are either comparable or
inverted comparable (the latter if one of the relations is binary and the com-
mon place ist the “left" (lower) place of this relation). Places connected by a
graph in the representation are also connected in the represented graph.

Let G be an atomic graph. Then the representation {{G}} trivially fulfills
these conditions. Now let G be an arbitrary graph from 〈Q〉PAL− with a rep-
resentation fulfilling the above conditions. The graphs appearing in the rep-
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resentation of ¬G constructed as described in Section 4 are the complements
of the graphs in the former representation. As arity, connectedness and com-
parability are stable under complementation these conditions are preserved.
The sets of the new representations are images of choice functions on the for-
mer representation. Because images of finite domains are finite and the only
finitely many choice functions for finite families of finite sets, the finiteness
condition on the former representation guarantees that there is only a finite
number of finite sets in the representation of ¬G.

The permutation of a graph only renames the places but does not change
the interpretation of the graphs in the representation (except for cases when
the interpretation of a binary graph becomes inverted because the former
higher place becomes the new lower place after the permutation) or the con-
nectedness of places (relative to the represented graph). Therefore two graphs
attached to a common place after the permutation have been attached to a
common places before. Becaue their interpretations have been comparable
or inverted comparable before by our assumption, they are comparable or
inverted comparable afterwards too (comparable changes to inverted compa-
rable and vice-versa when the permutation switches higher and lower places
of a binary relation).

For the join operation we first simplify the representation. Until now we
have allowed any number of relations attached to the same place in any of
the sets of the representation. In the Crux Lemma we have only one unary
and one binary relation for each place. By our assumpition any two graphs
attached to a common place have comparable interpretations. If both graphs
are binary they have the same interpretation. Also, because any place can
be connected to at most one other place by unary and binary relations, the
second place the graphs are attached to must be the same. Hence both graphs
are identical with respect to attached places and interpretation. Therefore, if
multiple binary graphs attached to the same places appear in one set of the
representation one has to retain only one. Similarly, the interpretations of
any two unary graphs attached to the same place are comparable, that is the
interpretation of one is a subset of the interpretation of the other. Because
there is only a finite number of graphs attached to the same place in any set
of the representation, there is one graph with the smallest interpretation. The
interpretation of the representation does not change if we eliminate all but
this smallest graph.

The other problem that may arise is that there are not too many but too few
graphs to apply the lemma. If there is no unary (or binary) relation attached
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to the corresponding places for the ρ-relations, we can supplement it with the
unary relation A (or the binary relation A2 respectively). After the applica-
tion of the Crux Lemma we can remove those graphs where a supplemented
relation appears because the interpretation of the first graph is then a super-
set of the product of A and the interpretation of the right graph of the lower
configuration in Fig. 23 when the binary relation is supplemented and of the
interpretation of the middle graph when the unary relation is supplemented;
the interpretation of the middle graph (when the binary relation is supple-
mented) and of the right graph (when the unary relation is supplemented) is
a superset of the interpretation of the lowest graph. As for the conditions of
the Crux Lemma: Because the core of A2 and of ¬A2 = /02 is A, any relation
ρ1 (supplemented or not) is comparable to the supplemented ρ2. Analogously
we handle the case that one or two of the σ -relations may lack.

After these preliminaries we see that the representation defined in Sec-
tion 4 for the join-operation can be replaced by one fulfilling the desired
condition. The finiteness condition is trivial because neither the number of
sets in the representation nor the number of graphs in one of these sets can
increase by applying the transformations.

Finally, let H be a second graph with a representation fulfilling the condi-
tion. Then the representation of the prodcut G×H defined in Section 4 will
fulfill the condition. Any two graphs attached to the same place will either
belong to the representation of G or – up to the shift of places – to the repre-
sentation of H and hence fulfill the comparability condition. Connectedness is
inherited from the original representations, too. The finiteness condition fol-
lows from the definition. This finishes the proof that every graph constructed
from a set Q of unary and binary relations has a representation fulfilling the
condition laid out at the beginning of this section.

Now let us consider the main question of Peirce’s Reduction Thesis: if we
apply the PAL-operations (but not the teridentity) only on unary and binary
relations, can we then construct all relations? We will answer this question
showing that at least one relation cannot be constructed: the teridentity. Let
us consider any ternary graph G constructed in this way such that its interpre-
tation contains the teridentity. As shown before it has then a representation
with the conditions mentioned above. Let a and b be two distinct elements
of A, then the triples (a,a,a) and (b,b,b) are both in the interpretation of
G and therefore there have to be sets S1 and S2 in the representation of G
such that (a,a,a) ∈ SA

1 and (b,b,b) ∈ SA
2 . As G is constructed from unary and

binary relations, there must be (at least) one place that is not connected to
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any of the other places. For this place there can only be unary graphs in the
representation with comparable interpretations. We assume that this place is
place 1 and that the interpretation of the graph attached to place 1 in the set
S1 is a subset of the interpretation of the graph attached to place 1 in the set
S2. As the element a must be in the interpretation of this graph in S1 and its
interpretation is a subset of the other graph, the element a is also an element
of the latter interpretation. As explained above we can assume that there is
no other graph attached to the place 1 in S2, hence the triple (a,b,b) is an
element of SA

2 and hence of GA. Thus we have shown that any graph con-
structed from unary and binary relations without teridentity that contains the
teridentity in its interpretation cannot be extensionally equal to the teridentity
but only to a strict superset. Therefore teridentity cannot be constructed not
using teridentity itself. This was the proof of Peirce’s Reduction Thesis.

Notes

1. In this paper we use the term “graph” to denote the structure represented by the shown di-
agrams. These diagrams can be interpreted as icons of existential graphs. For the authors
they are diagrams of mathematically defined graph structures. The algebraic definitions
in the sense of graph-theory can be found in (Hereth 2008). The PAL-operations can be
applied to these graphs, but they exist and can be interpreted independent from these op-
erations, while the terms considered in this section are defined by these operations. Using
the algebraic definitions it is shown in (Hereth 2008) that these graphs correspond to con-
gruence classes of PAL-terms, where each congruence class has the same interpretation
and the factorization into classes is compatible with PAL-operations. This mathematical
and mainly technical result allows to consider the graphs instead of the PAL-terms (this
made the proof in (Hereth Correia and Pöschel 2006) more difficult to read, but the inclu-
sion of the graphs there was not possible due to space constraints). In this paper, we use
the diagramatic representations of the graphs, which correspond intuitively and uniquely
(up to some trivial isomorphisms) to the algebraic defined ones.

2. In Peirce’s work there are fragments of a theory of infinite existential graphs. These
have not been considered by Burch (1991) or in our algebraization. There is no common
mathematical understanding of infinitary logic which we needed to model such graphs.
Even with the tool of infinite existential graphs one could only construct relations with
a well-ordering using the method for finite relations. For instance, a relation with the
cardinality of the real numbers R could not be defined this way, if we do not assume the
axiom of choice. This axiom allows the well-ordering of arbitrary sets, but using it makes
any proof non-constructive.
Admittedly, the construction presented in this paper recurs on a bijection between the
underlying set A and its cartesian product A×A. To prove that such a bijection exists for
any infinite set A one uses the axiom of choice too. However, there are known bijections
between N and N×N and as well between R and R×R. Consequently, our construction
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can be applied to any domain which consists of the finite union of finite subdomains,
enumerable subdomains or subdomains with the same cardinality as R. For practical
purposes this seems sufficient and therefore preferable to the version sketeched above.

3. For our proof we will need the rules of insertion and iteration to connect lines from the
sheet of assertion to lines in negative contexts (cuts), the rules of deiteration and deletion
to remove superfluous parts of the graph and the rule of double cut to remove (or simply
ignore) remaining double cuts with no elements between the two cuts. We simply follow
the usual rules given by Peirce and do not come near the problematic cases that Dau
describes in (Dau 2008). Dau’s work can however be adapted as a formal and precise
calculus for the graphs presented in our paper.
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