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RELATIONALLY COLLAPSING CLONES
JENS-UWE GRABOWSKI AND REINHARD POSCHEL

ABSTRACT. In this paper we start to investigate those sets of clones (over
a finite set A) which have the same invariant relations of fixed arity m.
Such sets form semi-intervals in the lattice of all clones and will be de-
scribed in more detail. In particular, collapsing clones are characterized,
i.e. clones which are uniquely determined by their m-ary invariant relations
(or, equivalently, for which the corresponding semi-interval collapses to a
single clone).

INTRODUCTION

Let £4 be the lattice of all clones of operations on a finite set A. Although
for |A] > 3 the structure of the uncountable lattice £4 is very complicated,
there are many attempts to investigate this lattice (for references see e.g.
[Ros 77], [P6s-K T79], [Sze 86]) and to classify its elements. The classification
of the clones F € L4 by their n-ary operations F(") or their m-ary invari-
ant relations Inqum) F, respectively, leads to equivalence classes F//n-Op and
F/m-Rel, respectively. If these equivalence classes “collapse” (= consist of a
single clone), i.e. if F is uniquely determined by F(*) or Inv&m) F| respectively,
then F is called (operationally) n-collapsing or relationally m-collapsing, re-

spectively.

While results on (operationally) n-collapsing clones can be found in [Ihr-P 93]
in the present paper we start corresponding investigations of the lattice L4
from the relational point of view. In particular we describe the structure and
some properties of the equivalence classes F//m-Rel. They are semi-intervals.
Moreover, for each such equivalence class I there exist only finitely many clones
minimal in [ and, in addition these clones are finitely generated (Thm. 3.3).
As a corollary we find neccessary and sufficient conditions for a clone to be
relationally m-collapsing (Thm. 3.4).

For that aim it is more natural to consider the lattice £} of all so-called rela-
tional clones which is dually isomorphic to £4. Some parts of the results are
independent of the concrete nature of the lattice and will be formulated and
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proved for arbitrary complete lattices (Prop. 2.3).

Finally, we give several examples (minimal clones, clones of constant opera-
tions, semi-intervals of Boolean clones (i.e. clones on A = {0, 1}), collapsing
Boolean clones and a class F//m-Rel for A = {0,1,2}). We demonstrate in
these cases how to apply the general results.

This paper is just a start and we hope that it will stimulate further research
towards a relational classification of clones.

1. BASIC NOTIONS AND NOTATIONS

1.1. Let A be a finite set. For finitary functions (operations) f: A™ — A
and relations ¢ C A™ over A we introduce the following notations:

O = {fIf:4"> A4}, 04:=]0Y,
=1
(m) s n( )
Ry" = {elecA™}, Ra:=JRy",
m=1
F®W = Fnol  for F C Oy,
Q™ = Qn R&m) for @ C R4.
J4 denotes the set of all projections, i.e. the operations
el: A" 3 A: (ay,...,8,)—a; (for1<i<n,ne{l,23,...}).

1.2. An operation f € Ofr) preserves a relation p € R&m] (or o is invariant
for f) if f[ri,...,ry] € o forall ry,...,r, € o (Where f[ry,...,r,] is defined
by flri,...,ra)(@) == f(ri(i),...,ra(4)), i € {1,... ,m}).

Then, for F C 04, Q C Ry,

Polg Q := {f € O | f preserves every p € Q}
is the set of so-called polymorphisms of ) and
Invg F :={p € R4 | o is invariant for every f € F}

denotes the set of all invariant relations of F.
It ist well-known that Poly — Inv4 establishes a Galois connection between
operations and relations and the Galois closed elements are exactly the (locally
closed) clones of operations and relations, respectively. For more details we
refer to e.g. [Pos-K 79], [Pos 79], [Pos 80].
Note that

fEPolgo < p€lnvyf
(for f € O4 and ¢ € R4). From the algebraic point of view f € Polyp
expresses the fact that f : (A;p)" — (A;p) is a (relational) homomorphism
or, equivalently, that p is a subalgebra of the direct power (A4; f)™ of the
algebra (A4; f).
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1.3. We recall that a clone F on A (notation F' < Oy4) is a subset FF' C O4
closed with respect to arbitrary compositions of functions and containing all

projections. The composition f[gi,...,gs] of f € OE;} and g1,...,9s € O_(4n)
is defined by

f[gl!"'rgs](ah”' !an) = f(gl[alt'“ san)s--- tgs(al}"- |an}}-
For F C Oy4 let (F)o , denote the clone generated by F (i.e. the least clone con-

taining F). For finite A every clone F can be characterized as F' = Pols Q for
a suitable set Q of relations (e.g. Q = Inv4 F) and we have (cf. e.g. [P6s-K 79])

(F)o, = PolgInvy F.

The clones on A form a complete algebraic lattice £4 with respect to inclusion
(where Fy AF, = FiNFy and F1 V F3 = (Fy U Fy)0, are meet and join).
A relational clone Q on A (notation Q < R4) can be defined internally as a
subset Q@ C R4 closed under some operations on relations (e.g. intersection,
relational product, ... ). We do not give here this definition but use equiva-
lently the following characterization (which, however, works for finite A only).
Let Q@ C R4. Then
[Q]r, == Inv4 Poly Q

is called the relational clone generated by Q. In case [Qlr, = Q we call @
a relational clone. The relational clones form a complete algebraic lattice £}
(with respect to inclusion, where meet and join are given by Q1AQ2 = Q1NQ2,
Q1 V Q2 = [Q1UQ:]r,). This lattice £} is dually isomorphic to £4 via the
mappings

Pola : L3 —=La: Q@+ Pola@Q

Invg : La—>L5: FreInvyF

The least relational clone is D4 := Inv4 O4 which consists of all (generalized)
diagonal relations ([P6s-K 79]).

1.4. We collect some facts concerning the Galois connection Poly — Inva4
(for details see e.g. [Pos-K 79]).

a) The mapping P(O4) — P(04) : F - Polglnva F and P(R4) —
P(Ra) : Q — InvgPolgQ, resp., are closure operators on the power
sets P(O4) and P(Ra), resp. As mentioned above, the Galois closed
sets are just the clones and relational clones.

b) For a clone F < O4 and a relation p € R4 with at most ¢ elements
(i.e. |o| < t) we have

F CPolyo «— F® CPolyop.
Consequently, for ¢ > |A™| — 1 we have lnvgm)F = Inv&m} F® since
t > |o| for any (non-trivial) g € R&m) \ {A™}.
Now we come to the crucial definitions of this paper.
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1.5. Definitions. Let n-Op, m-Rel and m-Rel”, resp., be the equivalence
relations on £4 and L}, resp., defined by their equivalence classes

F/n-Op := {Fe€Ly|F™=FM},
F/m-Rel := {F €Ly lnv&m] F= Inv&m) F} and
Q/m—Rel” = {QeL;|Q"™ =Q™} resp,

for F € L4 and Q € L}.

A clone FF < O4 0orQ < Ry, resp., is called (operationally) n-collapsing or (re-
lationally) m-collapsing, resp., if F/n-Op = {F} and Q/m-Rel” = {Q}, resp.
Moreover, a clone F < O is called relationally m-collapsingif F/m-Rel = {F}
or, equivalently, if the clone Inv4 F of its invariant relations is (relationally)
m-collapsing.

Note that collapsing clones are just those which are uniquely defined by their
operations or relations of a fixed arity. The equivalence relations m-Rel and
m-Rel* are dual to each other in the sense that

F € F/m-Rel <= Invs F € (Inv4 F)/m-Rel

and
Q € Q/m-Rel* <> PolsQ € (Pols Q)/m-Rel,

i.e. the operators Poly — Inv4 are antiisomorphisms between F/m-Rel and

Q/m-Rel™.
1.6. Remarks. The structure of F/n-Op is known to be the interval
F/n-Op = [(F™)o,,,Sta F™],

in the lattice £4 (cf. [Thr-P 93]) where Sta F(*) denotes the stabilizer of F(™),
i.e. the set of all functions f € OE;] (s € N), such that f[fi,..., fs] € F®)
for all fi,...,fs € F("). Thus n-Op gives a partition of L4 into intervals. A
criterion for n-collapsing clones can also be found in [Ihr-P 93].

For clones which consist of essentially unary operations only (i.e. transforma-
tion monoids), the above intervals are called monoidal intervals. Structural
results about these monoidal intervals can be found in [Kro 95]. In [Gra 97]
it is shown that binary operations suffice to test whether, for a given monoid
M = F() the monoidal interval F/1-Op collapses or not.

2. KERNEL OPERATORS

In this section we present a result on kernel operators in arbitrary complete
lattices. We shall apply this to our concrete lattices £4 and £} in the next
section.




RELATIONALLY COLLAPSING CLONES 159

2.1. Definition. Let L be a complete lattice. An operator K : L — L is
called algebraic if
K(z) =sup{K(z') | 2’ <z, 2’ is compact in L}!
for all z € L. K is called kernel operator if for all z,z,,x3 € L we have
e K(z) <,
e K(K(z))= K(z),
e 11 <1p= K(:cl) < K—(I‘g].
To every operator K we associate the equivalence relation ~x on L defined
by
T, ~K To = K(z1) = K(z3).
2.2. Examples. In connection with clones and relational clones the following
operators are of interest
Kn: La—La: Frs (FM)o,,
K*: L5=Ly: @ [@™n,
Both, K, (n € N) and K}, (m € N), are kernel operators on Ly and £},
respectively. The corresponding equivalence relations are just (cf. 1.5)
~k,=n-0p and ~gs=m-Rel".
Moreover, both they are algebraic. In fact, each (F(M)o, as well as [Q(™)]g,
is compact.

Remark: Instead of the kernel operator K, in L4 one can dually consider the
closure operator C; on L} defined by

Ci(lnva F) = Invg Kn(F), ie
C*(Q) = InvaKn(PolaQ)=InvaPol{’Q  forQ € L;.
Analogously, to K}, corresponds the closure operator
Cm(Pols Q) := Polg K. (Q), ie.
Cn(F) = PolgK5(Inva F)=Polylnvy" F for F € La.

In particular we have

P = m-Rel.
Thus every result on kernel operators easily can be transformed to a result on
the corresponding closure operator on the dual lattice.

2.3. Proposition. Let K be an algebraic kernel operator on a complete
lattice L and let I be an equivalence class of ~k. Then I is a (meet) semi-
interval, i.e. the following three conditions are satisfied:

! An element =’ is compact if z' < sup T (T C L) implies ' < sup 7" for some finite subset
T eT!
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(a) I has a least element oy,

(b) I is convex, i.e. z1,22 € I and z; <z <z imply x € 1,

(c) for each x € I there exists a mazimal (in I) element®* & € I such that
r<zI.

Proof. (a): Because of z ~x K(z) < z, the least element of I is o = K(z)
for any z € I.

(b): Obviously, we have K (z1) < K(z) < K(z2) = K(21), thus z € .

(c): We are going to apply Zorn’s Lemma and therefore we consider a chain
C C I. Obviously, oy < K(supC). On the other hand, by algebraicity of K
we have

K (supC) = sup{K (z') | 2’ <supC, z’ compact in L}.

From z’ < sup C with compact 2’ we conclude that there exists a finite subset
C' of C with 2/ < supC” and therefore (C is a chain) a single element z € C
with z’ < z. Consequently K (z') < K(z) = oy, i.e. K(supC) < 07.Thus we
get K (supC) = o7, hence supC € I. Now Zorn’s Lemma implies (c). a

3. RELATIONAL AND COLLAPSING CLONES

3.1. Proposition 2.3 can be applied to the kernel operators introduced in
92.2. However it turns out that in these concrete cases there can be said more
about the semi-intervals (see 3.3 below). We recall, a meet semi-interval is a
union of intervals with common least element (cf. 2.3). Analogously, a join
semi-interval is a union of intervals with common largest element. Because
collapsing clones are already treated in [Ihr-P 93] (cf. 1.6), we shall deal in the
following only with the relational case, i.e. with the kernel operator K7, and
its dual, the closure operator C, (cf. 2.2), although some results of [Thr-P 93]
are also covered by 2.3. Note that by 2.3, the equivalence classes @/m-Rel”
of relational clones with equal m-ary part Q™) form a meet semi-interval
while (via the dual isomorphisms Inv 4, Poly, cf. 1.3, 1.5) the corresponding
class F/m-Rel (for F = Pols Q) of all clones with the same m-ary invariant

relations Q(™) = Inv;m] F forms a join semi-interval (see Fig. 1).

3.2. In order to formulate the next results, we introduce the following no-
tions. A clone F € L4 (relational clone Q € Lj, resp.) is called finitely
relationally or m-relationally characterizable(finitely operationally characteriz-
able, resp.) if there exists a finite set Qo C R4 or Qo C Rg,‘m) (Fo C Oj4, resp.)
of relations (operations, resp.) such that F' = Pols Qo (Q = Invy4 Fy, resp.).

As usual, a (relational) clone is called finitely generated if it is generated
by a finite subset. There exists a purely lattice theoretic characterization of

2not uniquely defined: in I there may exist several maximal elements above z
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FIGURE 1.

The Galois connection Poly — Inv4 and semi-intervals

finitely generated clones: The following conditions (a)-(d) as well as (a’)-(d")
are equivalent for F' € L4, Q € £} with Q = Inv4 F and F = Poly Q:

(a)
(b)

(c)
(d)

F = Pol4 @ is finitely generated,
Q = Inv4 F is finitely opera-
tionally characterizable,

the interval [J4, F]z, is dually
atomic,

the interval [Q, RA]{;; is atomic
(i.e. every clone properly con-
taining () contains an upper
neighbour of Q).

(d')

Q = Inv4 F is finitely generated,
F' = Poly Q is finitely relation-
ally characterizable,

the interval [D4, Q]cs is dually

atomic,
the interval [F, O],

4 18 atomic.

In the following two theorems part (B) is just the translation of part (A) from
the lattice £ of relational clones to the lattice £4 of clones (via Pol, - Inv 4 )
and needs no extra proof.

3.3. Theorem (Properties of the semi-intervals). Let m € N, F ¢ LA
and Q € L. Then
(A) I" = Q/m-Rel* is a meet semi-interval which is the union of finitely
many intervals with the common least (finitely generated) element

[Q{m]]RA where every relational clone mazimal in I* is finitely opera-

tionally characterizable.
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(B) I = F/m-Rel is a join semi-interval which is the union of finitely many
intervals with the common largest (finitely relationally characterizable)
(m

element Pol 4 Inv), )F where every clone minimal in I is finitely gener-
ated.

Proof. (A) Obviously [Q{™)]g, is the least element in Q/m-Rel* (cf. 3.1). Be-
cause of 2.3 it remains to prove that there are finitely many maximal elements
in I™ each of which is finitely operationally characterizable.

Let @; be a maximal element in I*. Let Fy := Pol4 Q, and ¢t := |A|™ — 1. By
1.4(b) we have

v FY = v Fy = 1nv(™ Pol, @, = Q™

ie., vy F € 1*. But @y = Inva F; C Inv4 F{*) hence, by maximality of
Q1, we get Q1 = Inv 4 Flm.

This shows that @, is finitely operationally characterizable. Moreover |Of;)|
is finite, hence there are only finitely many choices Flm C OE;). O

3.4. Theorem (Criteria for collapsing).

A) A relational clone Q € L} 1is (relationally) m-collapsing if and only if the
A
following conditions are satisfied:
(i) Q is finitely generated by Q™)
(ii) @ is finitely operationally characterizable (cf. 3.2),
iii) each upper neighbour Q' of Q (in the lattice L} ) is generated by its
A
m-ary part Q™).
(B) A clone F € Ly is relationally m-collapsing if and only if the following
conditions are satisfied:
(i) F is m-relationally characterizable (i.e. F = Inv4Qq for Qo C
R(m))
A ]
(ii) F is finitely generated,
(iii) each lower neighbour F' of F (in the lattice L4) is m-relationally
characterizable.

Proof. (A) Let @ be m-collapsing. Then I* = Q/m-Rel™ = {Q} and (i) and (ii)
follow directly from 3.3(A). To prove (iii) we observe that Q’{m) # Q™ holds
for any upper neighbour Q’ of Q, consequently Q = [Q™)]g, < [Q"™)]r, <
Q', hence [Q""™ g, = Q"

Conversely, let (i)-(iii) be satisfied. From (i) it follows that Q is the least
element of I* := )/m-Rel”. Assume there exists another relational clone in
I*. By (ii) (cf. 3.2 (b)<=>(d)) there exists in /* also an upper neighbour @’

of Q. By (iii) we get Q C Q' = [Q""™]r, = [Q'™]r, = Q, a contradiction.
Thus @ is m-collapsing. O
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4. EXAMPLES

The following examples show in some relatively easy cases how to use the
results of the preceeding section.

4.1. Minimal clones. Let |A| > 3 (for |A| = 2 see 4.3 below). Then the
trivial clone J4 of all projections is characterizable by binary relations (see
e.g. [Pos-K 79, 4.1.14]). Thus it immediately follows from 3.4 that a minimal
clone (upper neighbour of J4 in L4) is relationally m-collapsing (m > 2) if
and only if it is m-relationally characterizable (note that 3.4(ii) is trivially
satisfied for minimal clones).

4.2. Clones of constant functions. Let |A| > 3 and B C A. Every clone

Cp :=({ca|a € B})o,
generated by a set of constant functions ¢, : A -+ A : x — a (a € B) is
3-relationally characterizable. In fact,

CB = pOIA ({Qi,j | 1] = B} u {ﬂ-3}}!

where g; ; := {(¢,j)}U{(a,a) | a € B} and 73 := {(2,y,2) € A®> |z =yory=
z}. To see this we remark that every unary operation preserving all p; ; must
be constant, and w3 forces an operation which preserves it to be unary. Note
that every subclone of Cpg is of the form Cg: for some B’ C B. Thus Cy
and every subclone is 3-relationally characterizable. Applying 3.4 we get: all
clones Cg are 3-relationally collapsing (B C A).

4.3. Collapsing Boolean clones (A = {0,1}). For A = {0,1} the lattice
L4 (Boolean clones) is well-known (it was determined by E.L. Post [Pos 41]).
Figure 2 shows this lattice and we use here POST’s original notations (e.g.
OA = Cl).?’

There are four equivalence classes w.r.t. 1-Rel (i.e. we consider the case m = 1).
Three of them turn out to be intervals, namely [Oj,C4lz,, [Os,C3)z, and
[Og, C3]z,, while the equivalence class C;/1-Rel (see Figure 3) is the union
of the two intervals [O4,Ci]z, and [Og,Cy]z,. The largest elements are 1-
relationally characterizable. The minimal elements are finitely generated,
more precisely, they are generated by unary functions, as expected from the
proof of Theorem 3.3.

For m = 2 we find two relationally 2-collapsing clones: My and C4. The other
clones belong to 17 nontrivial intervals.

For m = 3 there are 10 nontrivial intervals:

[L1,Cilc,, [Ls, D3], and [F®,F3)z, (i € {1,...,8}). All other 34 clones are
relationally 3-collapsing:

3 All what now follows easily can be checked starting from few well-known facts about the
clones and taking into account that the intersection of m-relationally characterizable clones
is again m-relationally characterizable.
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C, db}‘» Cs

FIGURE 2. The PosT-lattice £,

C2, C3, Cay M1, M2, M3, My, Dy, Dy, Lo, L3, L4, S1, S3, Ss, Se, P1, P3, Ps, P,

01, 04,05, 06, 0g, Og, F? (i e{1,...,8}).

In the case m > 4, only the infinite chains [F°,F™].,, 1 € {1,...,8}, form
nontrivial equivalence classes, all other clones are relationally m-collapsing.
Therefore, with exception of m = 1, all semi-intervals of Boolean clonesare
intervals.

G

Ficure 3. The semi-interval C;/1-Rel
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4.4. Example (A = {0,1,2}). Let A= {0,1,2} and let Q be the set of the
following five unary relations (= subsets of A):

{0}, {1}, {2}, {o,1}, {o,2}.

Each minimal clone F in the join semi-interval (Pols @Q)/1-Rel is generated by
binary functions (see proof of 3.3). Moreover, a single binary function suffices.
In fact, a basis of F' has to contain a function f not preserving the relation
{1,2} (the only non-trivial one missing in the above list). Then, by minima-
lity, FF = (f)o,-

It turns out that there are 15 minimal clones in (Polg @)/1-Rel. The genera-
ting functions may be chosen, for instance, according to the following tables:

0 00 0 2 0 0 2 0 1 0 0 1

0 1 0 01 2 01 2 0 1 0 1 11
0 0 2 0 0 2 2 0 2 01 2 0 0

0 1 2 0 1 2 01 2 0 1 2 0 1 2
0 1 0 0 10 0 1 0 01 2 0 1 2
0 0 2 0 1 2 Zz 1. 2 0 0 2 2 2
0 1 2 01 2 0 1 2 01 2 01 2
1 10 1 10 1 11 11 2 1 1 2
0 1 2 2 0 2 2 0 2 0 0 2 2 0 2

4.5. Problems. Many interesting clones are finitely relationally character-
izable (e.g. minimal and all maximal clones). If, in addition, a clone F is
finitely (operationally) generated, then every coatom in the interval [J4, F¢,
is also finitely relationally characterizable. Due to 3.4 there exists an m (e.g.
choose the maximal arity of relations characterizing F and the coatoms) such
that F' is m-relationally collapsing. Let v(F) be the least m € N such that
F is m-relationally collapsing (and let v(F) = oo if m does not exist). In
connection with this we mention here the following problems:

(1) Let F be a finitely relationally characterizable and finitely generated clone.
Determine v(F).

(2) For fired m, characterize clones F for which the semi-interval F'//m-Rel
becomes an interval.

(3) For fizred F, determine the least m such that F/m-Rel is an interval.
Does m always exist?
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