CONTRIBUTIONS TO GENERAL ALGEBRA 10 Proceedings of the Klagenfurt Conference, May 29 - June 1, 1997 Verlag Johannes Heyn, Klagenfurt 1998

RELATIONALLY COLLAPSING CLONES

JENS-UWE GRABOWSKI AND REINHARD PÖSCHEL

ABSTRACT. In this paper we start to investigate those sets of clones (over a finite set A) which have the same invariant relations of fixed arity m. Such sets form semi-intervals in the lattice of all clones and will be described in more detail. In particular, collapsing clones are characterized, i.e. clones which are uniquely determined by their m-ary invariant relations (or, equivalently, for which the corresponding semi-interval collapses to a single clone).

Introduction

Let \mathcal{L}_A be the lattice of all clones of operations on a finite set A. Although for $|A| \geq 3$ the structure of the uncountable lattice \mathcal{L}_A is very complicated, there are many attempts to investigate this lattice (for references see e.g. [Ros 77], [Pös-K 79], [Sze 86]) and to classify its elements. The classification of the clones $F \in \mathcal{L}_A$ by their n-ary operations $F^{(n)}$ or their m-ary invariant relations $\operatorname{Inv}_A^{(m)} F$, respectively, leads to equivalence classes F/n-Op and F/m-Rel, respectively. If these equivalence classes "collapse" (= consist of a single clone), i.e. if F is uniquely determined by $F^{(n)}$ or $\operatorname{Inv}_A^{(m)} F$, respectively, then F is called (operationally) n-collapsing or relationally m-collapsing, respectively.

While results on (operationally) n-collapsing clones can be found in [Ihr-P 93] in the present paper we start corresponding investigations of the lattice \mathcal{L}_A from the relational point of view. In particular we describe the structure and some properties of the equivalence classes F/m-Rel. They are semi-intervals. Moreover, for each such equivalence class I there exist only finitely many clones minimal in I and, in addition these clones are finitely generated (Thm. 3.3). As a corollary we find neccessary and sufficient conditions for a clone to be relationally m-collapsing (Thm. 3.4).

For that aim it is more natural to consider the lattice \mathcal{L}_A^* of all so-called relational clones which is dually isomorphic to \mathcal{L}_A . Some parts of the results are independent of the concrete nature of the lattice and will be formulated and

This research was partially supported by the Grant No. I-0333-263.06/93 from the G.I.F., the German-Israeli Foundation for Scientific Research and Development.

proved for arbitrary complete lattices (Prop. 2.3).

Finally, we give several examples (minimal clones, clones of constant operations, semi-intervals of Boolean clones (i.e. clones on $A = \{0,1\}$), collapsing Boolean clones and a class F/m-Rel for $A = \{0,1,2\}$). We demonstrate in these cases how to apply the general results.

This paper is just a start and we hope that it will stimulate further research towards a relational classification of clones.

1. Basic notions and notations

1.1. Let A be a finite set. For finitary functions (operations) $f: A^n \to A$ and relations $\varrho \subseteq A^m$ over A we introduce the following notations:

$$O_A^{(n)} := \{ f \mid f : A^n \to A \}, \quad O_A := \bigcup_{n=1}^{\infty} O_A^{(n)},$$

$$R_A^{(m)} := \{ \varrho \mid \varrho \subseteq A^m \}, \quad R_A := \bigcup_{m=1}^{\infty} R_A^{(m)},$$

$$F^{(n)} := F \cap O_A^{(n)} \quad \text{for } F \subseteq O_A,$$

$$Q^{(m)} := Q \cap R_A^{(m)} \quad \text{for } Q \subseteq R_A.$$

 J_A denotes the set of all projections, i.e. the operations $e_i^n: A^n \to A: (a_1, \ldots, a_n) \mapsto a_i \text{ (for } 1 \leq i \leq n, n \in \{1, 2, 3, \ldots\}).$

1.2. An operation $f \in O_A^{(n)}$ preserves a relation $\varrho \in R_A^{(m)}$ (or ϱ is invariant for f) if $f[r_1, \ldots, r_n] \in \varrho$ for all $r_1, \ldots, r_n \in \varrho$ (where $f[r_1, \ldots, r_n]$ is defined by $f[r_1, \ldots, r_n](i) := f(r_1(i), \ldots, r_n(i)), i \in \{1, \ldots, m\}$). Then, for $F \subseteq O_A, Q \subseteq R_A$,

$$\operatorname{Pol}_A Q := \{ f \in O_A \mid f \text{ preserves every } \varrho \in Q \}$$

is the set of so-called polymorphisms of Q and

$$\operatorname{Inv}_A F := \{ \varrho \in R_A \mid \varrho \text{ is invariant for every } f \in F \}$$

denotes the set of all invariant relations of F.

It ist well-known that $\operatorname{Pol}_A - \operatorname{Inv}_A$ establishes a Galois connection between operations and relations and the Galois closed elements are exactly the (locally closed) clones of operations and relations, respectively. For more details we refer to e.g. [Pös-K 79], [Pös 79], [Pös 80].

Note that

$$f \in \operatorname{Pol}_A \varrho \iff \varrho \in \operatorname{Inv}_A f$$

(for $f \in O_A$ and $\varrho \in R_A$). From the algebraic point of view $f \in \operatorname{Pol}_A \varrho$ expresses the fact that $f: \langle A; \varrho \rangle^n \to \langle A; \varrho \rangle$ is a (relational) homomorphism or, equivalently, that ϱ is a subalgebra of the direct power $\langle A; f \rangle^m$ of the algebra $\langle A; f \rangle$.

1.3. We recall that a clone F on A (notation $F \leq O_A$) is a subset $F \subseteq O_A$ closed with respect to arbitrary compositions of functions and containing all projections. The composition $f[g_1, \ldots, g_s]$ of $f \in O_A^{(s)}$ and $g_1, \ldots, g_s \in O_A^{(n)}$ is defined by

$$f[g_1,\ldots,g_s](a_1,\ldots,a_n):=f(g_1(a_1,\ldots,a_n),\ldots,g_s(a_1,\ldots,a_n)).$$

For $F \subseteq O_A$ let $\langle F \rangle_{O_A}$ denote the clone generated by F (i.e. the least clone containing F). For finite A every clone F can be characterized as $F = \operatorname{Pol}_A Q$ for a suitable set Q of relations (e.g. $Q = \operatorname{Inv}_A F$) and we have (cf. e.g. [Pös-K 79])

$$\langle F \rangle_{O_A} = \operatorname{Pol}_A \operatorname{Inv}_A F.$$

The clones on A form a complete algebraic lattice \mathcal{L}_A with respect to inclusion (where $F_1 \wedge F_2 = F_1 \cap F_2$ and $F_1 \vee F_2 = \langle F_1 \cup F_2 \rangle_{O_A}$ are meet and join).

A relational clone Q on A (notation $Q \leq R_A$) can be defined internally as a subset $Q \subseteq R_A$ closed under some operations on relations (e.g. intersection, relational product, ...). We do not give here this definition but use equivalently the following characterization (which, however, works for finite A only). Let $Q \subseteq R_A$. Then

 $[Q]_{R_A} := \operatorname{Inv}_A \operatorname{Pol}_A Q$

is called the relational clone generated by Q. In case $[Q]_{R_A} = Q$ we call Q a relational clone. The relational clones form a complete algebraic lattice \mathcal{L}_A^* (with respect to inclusion, where meet and join are given by $Q_1 \wedge Q_2 = Q_1 \cap Q_2$, $Q_1 \vee Q_2 = [Q_1 \cup Q_2]_{R_A}$). This lattice \mathcal{L}_A^* is dually isomorphic to \mathcal{L}_A via the mappings

$$\operatorname{Pol}_A: \mathcal{L}_A^* \to \mathcal{L}_A: Q \mapsto \operatorname{Pol}_A Q$$

 $\operatorname{Inv}_A: \mathcal{L}_A \to \mathcal{L}_A^*: F \mapsto \operatorname{Inv}_A F.$

The least relational clone is $D_A := \operatorname{Inv}_A O_A$ which consists of all (generalized) diagonal relations ([Pös-K 79]).

- **1.4.** We collect some facts concerning the Galois connection $Pol_A Inv_A$ (for details see e.g. [Pös-K 79]).
 - a) The mapping $\mathcal{P}(O_A) \to \mathcal{P}(O_A) : F \mapsto \operatorname{Pol}_A \operatorname{Inv}_A F$ and $\mathcal{P}(R_A) \to \mathcal{P}(R_A) : Q \mapsto \operatorname{Inv}_A \operatorname{Pol}_A Q$, resp., are closure operators on the power sets $\mathcal{P}(O_A)$ and $\mathcal{P}(R_A)$, resp. As mentioned above, the Galois closed sets are just the clones and relational clones.
 - b) For a clone $F \leq O_A$ and a relation $\varrho \in R_A$ with at most t elements (i.e. $|\varrho| \leq t$) we have

$$F \subseteq \operatorname{Pol}_A \varrho \iff F^{(t)} \subseteq \operatorname{Pol}_A \varrho.$$

Consequently, for $t \geq |A^m| - 1$ we have $\operatorname{Inv}_A^{(m)} F = \operatorname{Inv}_A^{(m)} F^{(t)}$ since $t \geq |\varrho|$ for any (non-trivial) $\varrho \in R_A^{(m)} \setminus \{A^m\}$.

Now we come to the crucial definitions of this paper.

1.5. **Definitions.** Let n-Op, m-Rel and m-Rel*, resp., be the equivalence relations on \mathcal{L}_A and \mathcal{L}_A^* , resp., defined by their equivalence classes

$$F/n ext{-}\mathrm{Op} := \{ \tilde{F} \in \mathcal{L}_A \mid \tilde{F}^{(n)} = F^{(n)} \},$$

$$F/m ext{-}\mathrm{Rel} := \{ \tilde{F} \in \mathcal{L}_A \mid \operatorname{Inv}_A^{(m)} \tilde{F} = \operatorname{Inv}_A^{(m)} F \} \text{ and }$$

$$Q/m ext{-}\mathrm{Rel}^* := \{ \tilde{Q} \in \mathcal{L}_A^* \mid \tilde{Q}^{(m)} = Q^{(m)} \} \text{ resp.},$$

for $F \in \mathcal{L}_A$ and $Q \in \mathcal{L}_A^*$.

A clone $F \leq O_A$ or $Q \leq R_A$, resp., is called *(operationally) n-collapsing* or *(relationally) m-collapsing*, resp., if F/n-Op = $\{F\}$ and Q/m-Rel* = $\{Q\}$, resp. Moreover, a clone $F \leq O_A$ is called *relationally m-collapsing* if F/m-Rel = $\{F\}$ or, equivalently, if the clone $Inv_A F$ of its invariant relations is (relationally) *m-collapsing*.

Note that collapsing clones are just those which are uniquely defined by their operations or relations of a fixed arity. The equivalence relations m-Rel and m-Rel* are dual to each other in the sense that

$$\tilde{F} \in F/m$$
-Rel \iff Inv_A $\tilde{F} \in (\text{Inv}_A F)/m$ -Rel*

and

$$\tilde{Q} \in Q/m\text{-Rel}^* \iff \operatorname{Pol}_A \tilde{Q} \in (\operatorname{Pol}_A Q)/m\text{-Rel},$$

i.e. the operators $\operatorname{Pol}_A - \operatorname{Inv}_A$ are antiisomorphisms between F/m-Rel and Q/m-Rel*.

1.6. Remarks. The structure of F/n-Op is known to be the interval

$$F/n$$
-Op = $[\langle F^{(n)} \rangle_{O_A}, \operatorname{Sta} F^{(n)}]_{\mathcal{L}_A}$

in the lattice \mathcal{L}_A (cf. [Ihr-P 93]) where Sta $F^{(n)}$ denotes the stabilizer of $F^{(n)}$, i.e. the set of all functions $f \in O_A^{(s)}$ $(s \in \mathbb{N})$, such that $f[f_1, \ldots, f_s] \in F^{(n)}$ for all $f_1, \ldots, f_s \in F^{(n)}$. Thus n-Op gives a partition of \mathcal{L}_A into intervals. A criterion for n-collapsing clones can also be found in [Ihr-P 93].

For clones which consist of essentially unary operations only (i.e. transformation monoids), the above intervals are called *monoidal intervals*. Structural results about these monoidal intervals can be found in [Kro 95]. In [Gra 97] it is shown that binary operations suffice to test whether, for a given monoid $M = F^{(1)}$, the monoidal interval F/1-Op collapses or not.

2. Kernel operators

In this section we present a result on kernel operators in arbitrary complete lattices. We shall apply this to our concrete lattices \mathcal{L}_A and \mathcal{L}_A^* in the next section.

2.1. Definition. Let L be a complete lattice. An operator $K: L \to L$ is called algebraic if

$$K(x) = \sup\{K(x') \mid x' \le x, x' \text{ is compact in } L\}^1$$

for all $x \in L$. K is called kernel operator if for all $x, x_1, x_2 \in L$ we have

- \bullet $K(x) \leq x$,
- $\bullet K(K(x)) = K(x),$
- $\bullet \ x_1 \leq x_2 \Rightarrow K(x_1) \leq K(x_2).$

To every operator K we associate the equivalence relation \sim_K on L defined by

$$x_1 \sim_K x_2 : \iff K(x_1) = K(x_2).$$

2.2. Examples. In connection with clones and relational clones the following operators are of interest

$$K_n: \mathcal{L}_A \to \mathcal{L}_A: F \mapsto \langle F^{(n)} \rangle_{\mathcal{O}_A},$$

 $K_m^*: \mathcal{L}_A^* \to \mathcal{L}_A^*: Q \mapsto [Q^{(m)}]_{R_A}.$

Both, K_n $(n \in \mathbb{N})$ and K_m^* $(m \in \mathbb{N})$, are kernel operators on \mathcal{L}_A and \mathcal{L}_A^* , respectively. The corresponding equivalence relations are just (cf. 1.5)

$$\sim_{K_n} = n$$
-Op and $\sim_{K_m^*} = m$ -Rel*.

Moreover, both they are algebraic. In fact, each $\langle F^{(n)} \rangle_{O_A}$ as well as $[Q^{(m)}]_{R_A}$ is compact.

Remark: Instead of the kernel operator K_n in \mathcal{L}_A one can dually consider the closure operator C_n^* on \mathcal{L}_A^* defined by

$$C_n^*(\operatorname{Inv}_A F) := \operatorname{Inv}_A K_n(F)$$
, i.e.
$$C_n^*(Q) := \operatorname{Inv}_A K_n(\operatorname{Pol}_A Q) = \operatorname{Inv}_A \operatorname{Pol}_A^{(n)} Q \quad \text{for } Q \in \mathcal{L}_A^*.$$

Analogously, to K_m^* corresponds the closure operator

$$C_m(\operatorname{Pol}_A Q) := \operatorname{Pol}_A K_m^*(Q)$$
, i.e.
 $C_m(F) := \operatorname{Pol}_A K_m^*(\operatorname{Inv}_A F) = \operatorname{Pol}_A \operatorname{Inv}_A^{(m)} F$ for $F \in \mathcal{L}_A$.

In particular we have

$$\sim_{C_m} = m$$
-Rel.

Thus every result on kernel operators easily can be transformed to a result on the corresponding closure operator on the dual lattice.

2.3. Proposition. Let K be an algebraic kernel operator on a complete lattice L and let I be an equivalence class of \sim_K . Then I is a (meet) semi-interval, i.e. the following three conditions are satisfied:

¹An element x' is compact if $x' \leq \sup T$ $(T \subseteq L)$ implies $x' \leq \sup T'$ for some finite subset $T' \subseteq T$.

- (a) I has a least element o1,
- (b) I is convex, i.e. $x_1, x_2 \in I$ and $x_1 \leq x \leq x_2$ imply $x \in I$,
- (c) for each $x \in I$ there exists a maximal (in I) element² $\hat{x} \in I$ such that $x \leq \hat{x}$.

Proof. (a): Because of $x \sim_K K(x) \leq x$, the least element of I is $o_I = K(x)$ for any $x \in I$.

(b): Obviously, we have $K(x_1) \leq K(x) \leq K(x_2) = K(x_1)$, thus $x \in I$.

(c): We are going to apply Zorn's Lemma and therefore we consider a chain $C \subseteq I$. Obviously, $o_I \leq K(\sup C)$. On the other hand, by algebraicity of K we have

$$K(\sup C) = \sup \{K(x') \mid x' \le \sup C, x' \text{ compact in } L\}.$$

From $x' \leq \sup C$ with compact x' we conclude that there exists a finite subset C' of C with $x' \leq \sup C'$ and therefore (C is a chain) a single element $x \in C$ with $x' \leq x$. Consequently $K(x') \leq K(x) = o_I$, i.e. $K(\sup C) \leq o_I$. Thus we get $K(\sup C) = o_I$, hence $\sup C \in I$. Now Zorn's Lemma implies (c).

3. RELATIONAL AND COLLAPSING CLONES

- 3.1. Proposition 2.3 can be applied to the kernel operators introduced in 2.2. However it turns out that in these concrete cases there can be said more about the semi-intervals (see 3.3 below). We recall, a meet semi-interval is a union of intervals with common least element (cf. 2.3). Analogously, a join semi-interval is a union of intervals with common largest element. Because collapsing clones are already treated in [Ihr-P 93] (cf. 1.6), we shall deal in the following only with the relational case, i.e. with the kernel operator K_m^* and its dual, the closure operator C_m (cf. 2.2), although some results of [Ihr-P 93] are also covered by 2.3. Note that by 2.3, the equivalence classes Q/m-Rel* of relational clones with equal m-ary part $Q^{(m)}$ form a meet semi-interval while (via the dual isomorphisms Inv_A , Pol_A , cf. 1.3, 1.5) the corresponding class F/m-Rel (for $F = Pol_A Q$) of all clones with the same m-ary invariant relations $Q^{(m)} = Inv_A^{(m)} F$ forms a join semi-interval (see Fig. 1).
- **3.2.** In order to formulate the next results, we introduce the following notions. A clone $F \in \mathcal{L}_A$ (relational clone $Q \in \mathcal{L}_A^*$, resp.) is called *finitely relationally* or m-relationally characterizable(finitely operationally characterizable, resp.) if there exists a finite set $Q_0 \subseteq R_A$ or $Q_0 \subseteq R_A^{(m)}$ ($F_0 \subseteq O_A$, resp.) of relations (operations, resp.) such that $F = \operatorname{Pol}_A Q_0$ ($Q = \operatorname{Inv}_A F_0$, resp.). As usual, a (relational) clone is called finitely generated if it is generated by a finite subset. There exists a purely lattice theoretic characterization of

 $^{^{2}}$ not uniquely defined: in I there may exist several maximal elements above x

FIGURE 1. The Galois connection $Pol_A - Inv_A$ and semi-intervals

finitely generated clones: The following conditions (a)-(d) as well as (a')-(d') are equivalent for $F \in \mathcal{L}_A$, $Q \in \mathcal{L}_A^*$ with $Q = \operatorname{Inv}_A F$ and $F = \operatorname{Pol}_A Q$:

- (a) $F = Pol_A Q$ is finitely generated,
- (b) $Q = \operatorname{Inv}_A F$ is finitely operationally characterizable,
- (c) the interval $[J_A, F]_{\mathcal{L}_A}$ is dually atomic,
- (d) the interval $[Q, R_A]_{\mathcal{L}_A^*}$ is atomic (i.e. every clone properly containing Q contains an upper neighbour of Q).
- (a') $Q = Inv_A F$ is finitely generated,
- (b') $F = \operatorname{Pol}_A Q$ is finitely relationally characterizable,
- (c') the interval $[D_A, Q]_{\mathcal{L}_A^{\bullet}}$ is dually atomic,
- (d') the interval $[F, O_A]_{\mathcal{L}_A}$ is atomic.

In the following two theorems part (B) is just the translation of part (A) from the lattice \mathcal{L}_A^* of relational clones to the lattice \mathcal{L}_A of clones (via $\operatorname{Pol}_A - \operatorname{Inv}_A$) and needs no extra proof.

3.3. Theorem (Properties of the semi-intervals). Let $m \in \mathbb{N}$, $F \in \mathcal{L}_A$ and $Q \in \mathcal{L}_A^*$. Then

(A) $I^* = Q/m$ -Rel* is a meet semi-interval which is the union of finitely many intervals with the common least (finitely generated) element $[Q^{(m)}]_{R_A}$ where every relational clone maximal in I^* is finitely operationally characterizable.

(B) I = F/m-Rel is a join semi-interval which is the union of finitely many intervals with the common largest (finitely relationally characterizable) element $\operatorname{Pol}_A \operatorname{Inv}_A^{(m)} F$ where every clone minimal in I is finitely generated.

Proof. (A) Obviously $[Q^{(m)}]_{R_A}$ is the least element in Q/m-Rel* (cf. 3.1). Because of 2.3 it remains to prove that there are finitely many maximal elements in I^* each of which is finitely operationally characterizable.

Let Q_1 be a maximal element in I^* . Let $F_1 := \operatorname{Pol}_A Q_1$ and $t := |A|^m - 1$. By 1.4(b) we have

$$\operatorname{Inv}_{A}^{(m)} F_{1}^{(t)} = \operatorname{Inv}_{A}^{(m)} F_{1} = \operatorname{Inv}_{A}^{(m)} \operatorname{Pol}_{A} Q_{1} = Q_{1}^{(m)},$$

i.e., $\operatorname{Inv}_A^{(m)} F_1^{(t)} \in I^*$. But $Q_1 = \operatorname{Inv}_A F_1 \subseteq \operatorname{Inv}_A F_1^{(t)}$ hence, by maximality of Q_1 , we get $Q_1 = \operatorname{Inv}_A F_1^{(t)}$.

This shows that Q_1 is finitely operationally characterizable. Moreover $|O_A^{(t)}|$ is finite, hence there are only finitely many choices $F_1^{(t)} \subseteq O_A^{(t)}$.

3.4. Theorem (Criteria for collapsing).

- (A) A relational clone $Q \in \mathcal{L}_A^*$ is (relationally) m-collapsing if and only if the following conditions are satisfied:
 - (i) Q is finitely generated by $Q^{(m)}$,
 - (ii) Q is finitely operationally characterizable (cf. 3.2),
 - (iii) each upper neighbour Q' of Q (in the lattice \mathcal{L}_A^*) is generated by its m-ary part ${Q'}^{(m)}$.
- (B) A clone $F \in \mathcal{L}_A$ is relationally m-collapsing if and only if the following conditions are satisfied:
 - (i) F is m-relationally characterizable (i.e. $F = \operatorname{Inv}_A Q_0$ for $Q_0 \subseteq R_A^{(m)}$),
 - (ii) F is finitely generated,
 - (iii) each lower neighbour F' of F (in the lattice \mathcal{L}_A) is m-relationally characterizable.

Proof. (A) Let Q be m-collapsing. Then $I^* = Q/m$ -Rel $^* = \{Q\}$ and (i) and (ii) follow directly from 3.3(A). To prove (iii) we observe that $Q'^{(m)} \neq Q^{(m)}$ holds for any upper neighbour Q' of Q, consequently $Q = [Q^{(m)}]_{R_A} < [Q'^{(m)}]_{R_A} \le Q'$, hence $[Q'^{(m)}]_{R_A} = Q'$.

Conversely, let (i)-(iii) be satisfied. From (i) it follows that Q is the least element of $I^* := Q/m$ -Rel*. Assume there exists another relational clone in I^* . By (ii) (cf. 3.2 (b) \iff (d)) there exists in I^* also an upper neighbour Q' of Q. By (iii) we get $Q \subset Q' = [Q'^{(m)}]_{R_A} = [Q^{(m)}]_{R_A} = Q$, a contradiction. Thus Q is m-collapsing.

4. EXAMPLES

The following examples show in some relatively easy cases how to use the results of the preceding section.

- 4.1. Minimal clones. Let $|A| \geq 3$ (for |A| = 2 see 4.3 below). Then the trivial clone J_A of all projections is characterizable by binary relations (see e.g. [Pös-K 79, 4.1.14]). Thus it immediately follows from 3.4 that a minimal clone (upper neighbour of J_A in \mathcal{L}_A) is relationally m-collapsing ($m \geq 2$) if and only if it is m-relationally characterizable (note that 3.4(ii) is trivially satisfied for minimal clones).
- **4.2.** Clones of constant functions. Let $|A| \ge 3$ and $B \subseteq A$. Every clone

$$C_B := \langle \{c_a \mid a \in B\} \rangle_{O_A}$$

generated by a set of constant functions $c_a:A\to A:x\mapsto a\ (a\in B)$ is 3-relationally characterizable. In fact,

$$C_B = \operatorname{Pol}_A \left(\{ \varrho_{i,j} \mid i, j \in B \} \cup \{ \pi_3 \} \right),\,$$

where $\varrho_{i,j} := \{(i,j)\} \cup \{(a,a) \mid a \in B\}$ and $\pi_3 := \{(x,y,z) \in A^3 \mid x=y \text{ or } y=z\}$. To see this we remark that every unary operation preserving all $\varrho_{i,j}$ must be constant, and π_3 forces an operation which preserves it to be unary. Note that every subclone of C_B is of the form $C_{B'}$ for some $B' \subseteq B$. Thus C_A and every subclone is 3-relationally characterizable. Applying 3.4 we get: all clones C_B are 3-relationally collapsing $(B \subseteq A)$.

4.3. Collapsing Boolean clones $(A = \{0, 1\})$. For $A = \{0, 1\}$ the lattice \mathcal{L}_A (Boolean clones) is well-known (it was determined by E.L. Post [Pos 41]). Figure 2 shows this lattice and we use here Post's original notations (e.g. $O_A = \mathsf{C}_1$).

There are four equivalence classes w.r.t. 1-Rel (i.e. we consider the case m=1). Three of them turn out to be intervals, namely $[O_1, C_4]_{\mathcal{L}_2}$, $[O_5, C_2]_{\mathcal{L}_2}$ and $[O_6, C_3]_{\mathcal{L}_2}$, while the equivalence class $C_1/1$ -Rel (see Figure 3) is the union of the two intervals $[O_4, C_1]_{\mathcal{L}_2}$ and $[O_8, C_1]_{\mathcal{L}_2}$. The largest elements are 1-relationally characterizable. The minimal elements are finitely generated, more precisely, they are generated by unary functions, as expected from the proof of Theorem 3.3.

For m=2 we find two relationally 2-collapsing clones: M_4 and C_4 . The other clones belong to 17 nontrivial intervals.

For m=3 there are 10 nontrivial intervals:

 $[\mathsf{L}_1,\mathsf{C}_1]_{\mathcal{L}_2},\ [\mathsf{L}_5,\mathsf{D}_3]_{\mathcal{L}_2}\ \mathrm{and}\ [\mathsf{F}_i^\infty,\mathsf{F}_i^3]_{\mathcal{L}_2}\ (i\in\{1,\ldots,8\}).$ All other 34 clones are relationally 3-collapsing:

³ All what now follows easily can be checked starting from few well-known facts about the clones and taking into account that the intersection of m-relationally characterizable clones is again m-relationally characterizable.

FIGURE 2. The Post-lattice \mathcal{L}_2

 $\begin{array}{l} C_2, C_3, C_4, M_1, M_2, M_3, M_4, D_1, D_2, L_2, L_3, L_4, S_1, S_3, S_5, S_6, P_1, P_3, P_5, P_6, \\ O_1, O_4, O_5, O_6, O_8, O_9, \ F_i^2 \ (i \in \{1, \dots, 8\}). \end{array}$

In the case $m \geq 4$, only the infinite chains $[\mathsf{F}_i^\infty, \mathsf{F}_i^m]_{\mathcal{L}_2}, i \in \{1, \dots, 8\}$, form nontrivial equivalence classes, all other clones are relationally m-collapsing. Therefore, with exception of m=1, all semi-intervals of Boolean clonesare intervals.

FIGURE 3. The semi-interval $C_1/1$ -Rel

4.4. Example $(A = \{0, 1, 2\})$. Let $A = \{0, 1, 2\}$ and let Q be the set of the following five unary relations (= subsets of A):

$$\{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}.$$

Each minimal clone F in the join semi-interval $(\operatorname{Pol}_A Q)/1$ -Rel is generated by binary functions (see proof of 3.3). Moreover, a single binary function suffices. In fact, a basis of F has to contain a function f not preserving the relation $\{1,2\}$ (the only non-trivial one missing in the above list). Then, by minimality, $F = \langle f \rangle_{O_A}$.

It turns out that there are 15 minimal clones in $(Pol_A Q)/1$ -Rel. The generating functions may be chosen, for instance, according to the following tables:

	1				1				1				f				ï		
-	0	0	0	_	0	0	2	-	0	0	2	_	0	1	0	_	0	1	0
	0	1	0		0	1	2		0	1	2		0	1	0		1	1	1
	0	0	2		0	0	2		2	0	2		0	1	2		0	0	2
_	0	1	2	_	0	1	2	_	0	1	2	-	0	1	2	<u> </u>	0	1	2
	0	1	0		0	1	0		0	1	0		0	1	2		0	1	2
	0	0	2		0	1	2		2	1	2		0	0	2		2	0	2
-	0	1	2	-	0	1	2	-	0	1	2	-	0	1	2	88 B	0	1	2
	1	1	0		1	1	0		1	1	1		1	1	2		1	1	2
	0	1	2		2	0	2		2	0	2		0	0	2		2	0	2

- **4.5. Problems.** Many interesting clones are finitely relationally characterizable (e.g. minimal and all maximal clones). If, in addition, a clone F is finitely (operationally) generated, then every coatom in the interval $[J_A, F]_{\mathcal{L}_A}$ is also finitely relationally characterizable. Due to 3.4 there exists an m (e.g. choose the maximal arity of relations characterizing F and the coatoms) such that F is m-relationally collapsing. Let $\gamma(F)$ be the least $m \in \mathbb{N}$ such that F is m-relationally collapsing (and let $\gamma(F) = \infty$ if m does not exist). In connection with this we mention here the following problems:
 - Let F be a finitely relationally characterizable and finitely generated clone. Determine γ(F).
 - (2) For fixed m, characterize clones F for which the semi-interval F/m-Rel becomes an interval.
 - (3) For fixed F, determine the least m such that F/m-Rel is an interval.

 Does m always exist?

REFERENCES

[Gra 97] J.-U. Grabowski, Binary operations suffice to test collapsing of monoidal intervals. To appear in Algebra Universalis.

[Ihr-P 93] T. Ihringer, R. Pöschel, Collapsing clones. Acta Sci. Math. (Szeged) 58(1993), pp. 99-113.

- [Kro 95] A.A. Krokhin, Monoid intervals in lattices of clones (in Russian). Algebra i Logika 34, 3, 1995, pp. 288-310. English translation: Algebra and Logic 34, 3, 1995, pp. 155-168.
- [Pös 79] R. Pöschel, Concrete representation of algebraic structures and a general Galois theory. In: Contributions to General Algebra, Proc. Klagenfurt Conf., May 25-28, 1979, pp. 249-272. Verlag J. Heyn, Klagenfurt 1979.
- [Pös 80] R. Pöschel, A general Galois theory for operations and relations and concrete characterization of related algebraic structures. Report R-01/80, ZIMM, AdWdDDR, Berlin 1980.
- [Pös-K 79] R. Pöschel, L.A. Kalužnin, Funktionen- und Relationenalgebren. VEB Deutscher Verlag der Wissenschaften, Berlin 1979. Birkhäuser Verlag, Basel and Stuttgart 1979.
- [Pos 41] E. Post, The two-valued iterative systems of mathematical logic. Ann. of Math. Studies (Princeton) 5(1941).
- [Ros 77] I.G. Rosenberg, Composition of functions of finite sets, completeness and relations, a short survey. In: Multiple-valued logic and Computer Science (D. Rine ed.), pp. 144-187. North Holland, 1977.
- [Sze 86] Á. Szendrei, Clones in universal algebra. Les Presses de L'Université de Montréal, Montréal 1986.

Jens-Uwe Grabowski, Reinhard Pöschel Technische Universität Dresden Institut für Algebra D – 01062 Dresden Germany

Tel.: +49-351-463 7515 Fax: +49-351-463 4235

E-MAIL: [GRABO, POESCHEL] @MATH.TU-DRESDEN.DE