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Power algebras: clones and relations 

By J. Brunner, Th .  Drescher, R. Pöschel, H. Seidel 

Abstract: Every operation or relation on a base set A can be "lifted" to the power set P ( A ) .  
In this paper clones of operations and corresponding invariant relations are studied under this 
process of lifting (e.g. the clone generated by all lifted operations of a clone is characterized 
internally by 6-closure (Thm. 2.2) and externally by special invariant relations (Thm. 2.4, 3.3)). 
Generalizations to multifunctions are mentioned. 

1. Introduction 

1.1. For any operation f as well as for a relation p on a base set A one can form a 
"lifted" operation f #  or relation p#, resp., on the power set P(A). Thus every algebraic 
structure A on A gives rise for a corresponding power structure A# on P(A)  (called 
power algebra, complex algebra or global). This idea goes back to FROBENIUS in the 
context of group theory. 

An excellent overview of known results and a universal-algebraic treatment of power 
structures can be found in [Bri 911. In that paper the reader may also find many 
references and Open problems. 

A leading question is the following: How are algebraic properties of elementwise 
defined structures and their corresponding power structures related? 

The present paper is an initial step to study the following aspects of the lifting process 
from structures to power structures: 

1. Clones (of term operations of algebras) 
2. Characterization of operations by invariant relations 
3. Set-valued operations (multioperations) 

The notion of a clone, i.e. a set of operations closed under composition and containing 
all projections, is essential in many parts of universal algebra. While the structure 
of all Boolean clones (i.e. clones on a two-element set) is more or less known, many 
problems remain Open for clones on sets with more than two elements. In fact, it seems 
to be a hopeless task to describe completely the lattice of all clones on a finite set. 
Therefore it makes sense to select special classes of clones. Power algebras and their 
clones show that clones may be extended from "small" (finite) sets A to "large" sets 
P(A)  and, vice versa, that under certain circumstances a clone on a "large" set may 
be reduced to  a clone on a "small" set. 



294 J. Brunner, Th. Drescher, R. Pöschel, H. Seidel 

In Section 2 we shall See that  for a clone C on A, the set of all lifted operations C# = 
{f# I f E C} surprisingly does not form a clone on the power set P ( A )  (e.g. since lifting 
cannot produce fictitious variables). However, C# is not far from being a clone: the 
closure 6(C#) with respect to  adjoining fictitious variables and identification of variables 
gives the clone ~ l o n e ~ ( ~ ) ( C # )  generated by C# (Theorem 2.2). I t  is well known (cf. e.g. 
[Pös 79],[Pös-K 79; 1.2.11) that every (locally closed) clone ("Fuizktioneizalgebra") C on 
A can be characterized externally as the set PolAQ of operations preserving a set Q of 
relations on A. For finite A, Theorem 2.4 provides such an  external characterization 
of the clone generated by 0f (where OA denotes the set of all finitary operations on 
A) via four special relations (two unary, a binary and a ternary one). 

In Section 3 we study in more detail the interplay between operations and relations 
(more precisely, the GALOIS-connection Pol - I n v )  under the lifting process C c-- C#. 
Proposition 3.2 shows that  an operation f preserves a relation Q iff f #  preserves e#; 
therefore the operator Pol (restricted to  0 f )  commutes with lifting (Corollary 3.3). 

Power structures suggest the investigation of operations with values in P ( A ) .  Such 
multioperatioizs, polyoperations or set-valuerl operations f : An -+ P ( A )  are a natural 
generalization of the operations in OA t o  which the lifting process f - f #  can be 
applied, too. Multioperations were first studied in the group case (i.e. for multigroups, 
See [Bru 58; Ch.II.71 for references). Moreover, set-valued operations have become 
useful in computer science for the specification of partial or non-deterministic data  
structures. Therefore, in Section 4 we treat multioperations in full analogy to  Sections 
2 and 3 and mention some results. 

considerably improved the presentation 

Let us now introduce in detail all needed notions, notations and known facts. 

1.2. Given a set A, let OA and RA, resp., denote the set of all finitary operations and 
relations, respectively (for technical reasons we exclude zero-ary operations which can 
be treated as unary constant functions), and let N = {1,2,3, .  . .}: 

P ( A )  = { B  1 B C A} denotes the power set. Every f E o?) can be lifted t o  P ( A )  by 

f #  : P(A)" + P ( A )  : ( B i , .  . . , B,) H { f(bl ,  . . . , b,) I b; E B;, 1 < i 5 n}. 

The projections e t A ,  for short e l ,  are the operations defined by eS(zl , .  . . ,X,) = z; (1 < 
i 5 n E N ) ,  e = e j  is the identity function. 

1.3. For relations e C_ Am the lifted relation e# C P(A)m cannot be defined as canon- 
ically as for operations. The following definition agrees with tha t  of [Bri 911 and will 
sufficebfor our purposes, too: 

(BI ,  Bm) E : U 
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That is, (B1,.  . ., B,) belongs to  Q# iff every b E B; can be completed t o  an m- 
tupel from Q, i.e. B; C {b I Q n (B1 X . .. X Bi-l X {b) X Bi+l X . . . X B,) # 0) 
( B l , .  . . , B, E P(A)) .  Equivalently, the relation Q# arises from Q, if one takes some m- 
tupels from Q, collects the elements in each component and takes the obtained m-tupel 
of "component-sets" as an element of Q#, i.e. Q# = {(prl(u), . . . ,prm(u))  I U C Q), 
where pri(u) := {a 1 3 ( a i , .  . . , um)  E U : a = U,). 

For F C OA, Q C RA,  let 

F(") := F n oA), Q(-) := Q n RA), 
J'# := {f# I f E F ) ,  Q# := {Q# 1 Q E Q). 

1.4. An operation f E o?) preserves a relation Q E R L ~ ) ,  or Q is an invariant relation 
for f ,  if for all ( ~ 1 1 , .  . . , a,l) E Q , .  . . , (a l„ .  . . , um,) E Q we have 

. For F C OA, Q C RA define 

1 n v ~ F  := {Q E RA I V f E F : f preserves Q) (invariant relations), 

P o ~ A Q  := {f E OA 1 V Q  E Q : f preserves Q) ("polymorphisms"). 

In algebraic terminology we have Q E InVAF ( Q  m-ary) iff Q is a subalgebra of the m-th 
power of the algebra ( A ;  F) .  

1.5. A clone (of operations) ori A is a subset C of OA satisfying the following conditions: 

(i) C contains all projections eS (1 5 i 5 n E N) .  
(ii) C is closed w.r.t. superposition (~om~osition),  i.e. 

f E C(,), 91,. . . ,g, E C(,) implies f [gl, . . . , g,] E C(,), where 
f [gi ,  . . . , g r n ] ( x ~ , .  . .>X, )  := f (gl (21, .  . ., X,), . . . , g m ( x ~ , . .  . , X,)) for X I , .  . . , X ,  E 
A. 

1.6. There are several equivalent definitions of a clone (cf. e.g. [Pös-K 79; 1.1.2-1.1.31. 
The crucial closure condition is that with respect to the superposition (coinposition) 
1.5(ii). Manipulation with projections shows that a clone is also closed with respect to  
so-called place transformations 6, (i.e. identification of variables, adjoining fictitious 
variables or permutation of variables): 

(iii) If C is a clone, f E C(,) and T : (1,. . . , n) - { I , .  . . , m) is an arbitrary mapping 
(m,  n E N ) ,  then 6,(f) E C(,), where 
b r ( f ) (x i , .  . ., X,) := f(x,(i), . . - ,  X,(,)) for 21,. . ., xm E A. 

Because it is needed below, we introduce the 6-closure of a Set F C OA as follows: 

6(F)  := {6,(f) I f E F("), T : { I , .  . . , n) + { I , .  . . , m), n,  m E N). 

For exarnple, 6({e)) is the set of all projections since eS = 6,(e) for 
T : (1) + { I , .  . . , n)  : 1 H i. By (iii), 6(C) = C for every clone C. 

Given F C OA, the clone gelzerated by F (i.e., the smallest clone containing F )  is 
denoted by clOneA(F). 

1.7. The operators Pol - Inv  (cf. 1.4) form a GALOIS-connection between sets of 
operations and sets of relations. For finite A the GALOIS-closed sets of operations 
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PolA InvA F (for some F C OA) are exactly the clones (for infinite A one gets so-called 
locally closed clones) [Pös-K 79; 1.2.11, i.e. cioneAF = PolA InvA F. In particular, 
PolAQ ( for Q C RA)  is a clone and every clone C can be externally characterized as 
C =  pol^ Q. 

2. Lifted clones 

In this section we give an internal characterization of ~ l o n e p ( ~ ) ( C # )  for a clone C C 
OA by describing its elements (Thm. 2.2) via 6-closure and, for finite A, characterize 
c ~ o n e ~ ( ~ ) ( ü ~ )  externally via invariant relations (Thm. 2.4). 

2.1. Let f and g l , .  . . , g, be operations on A with arities m and n1,. . . , n,, resp., and 
let 

f ( g i > . . . > ~ m )  
denote the operation h of arity nl + . . . + n, defined by 

h(x11,. . . ,X in i> . .  .,Xrni, ... >Xmnm) := ~ ( ! ~ I ( x I I , . . .  ,Xinl ) ,* .  - , g r n ( ~ r n i , - .  .,Xmnm))> 
(this might be called linearized comnposition). 

The  following two properties can easily be checked: 

(i) Linearized composition is compatible with lifting (cf. [Gau 571 or the Linearity 
lemina in [Grä-W 84]), i.e. 

# h# = f #  (g? , . . . ,  gm) 

(this does not hold for the usual composition as defined in 1.5). 
(ii) Every clone C is closed w.r.t. linearized composition, i.e. 

T h e o r e m 2.2 Let C be a clone on A. Then (cf. 1.6) 

clone P(A)  (C#) = 6 ( ~ # )  

P r o o f . From C# 5 clone (C#) and 1.6 we conclude 6 ( ~ # )  C 6(clone (C#)) =clone (C#). 
Thus it remains to  prove that  6(C#) is a clone on P(A):  
Claim 1: 6(C#) contains all projections. 
In fact, since e# E C# is the identity on P(A) ,  6(C#) contains 6({e#)) which is the set 
of all projectioris (cf. 1.6). 
Claim 2: &(C#) is closed w.r.t. superposition (cf. 1.5). 
To show this, let F E 6 ( ~ # ) ( ~ )  and G I , .  . . ,G, E b(C#)("). We will show that  
FIG1,.  . . , G m ]  is the lift of a linearized composition of certain operations in C, fol- 
lowed by a suitable place transformation. By 1.6, there are operations f and g ~ ,  . . . , g, 
in C with arities M and N I , .  . . , N m ,  respectively, and place transformations cr : 
(1 , .  . . , M )  + { I , . .  . ,m )  and ß; : (1, .  . . , N i )  + (1, .  . . ,TL)  such that  F = 6,(f#) 
and G, = ~ ~ , ( ~ # ) f o r  i =  1 , .  . . , m. Thus h:= f (g,@), . . . , s , ( ~ ) )  belongs to  C (cf. 2.1(ii)). 
Let H := 6,(h#) where y : {(j ,  k) I 1 5 j 5 M ,  1 5 k < - (1, .  . . , n)  is given 
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by y ( j ,  k) := ß,(j)(k). We are going to show H = FIGl, . . . ,Gm] which proves claim 2 
since H E s(c#). In fact, for X i , .  . . , X n  E P(A) we have 
F [ G l , .  . . , Gm] ( X i , .  . ., Xn) 

= F(GI(X~,...~X~),...,G~(X~,...~X~)) 
= ~ ( ~ ß ~ ( g , # ) ( x i  , . . . , X  n),...,bßm(~#)(Xi,...,Xn)) 

# = F(g1 (Xßl(i), ... , X ß l ( ~ l ) ) ,  ... ,g#(Xßm(l), . .. , X ß m ( ~ m ) ) )  

= ba(f#)(g,#(xß,(,), . . . , X ß l ( ~ , ) ) ,  . .. 7g#(Xßm(l), . - .  , Xßm(Nm))) 
# 

= f"(g#(l)(xßo(l)(l), ' '  ' 7 x ß o ( l ) ( ~ o ( ~ ) ) ) ,  ' '  , g c ~ ( M ) ( ~ ß ~ ( M ) ( l ) ,  ' ' 7Xßa(M)(No(M)))) 
2.1( i )  

= h#(Xß,(l)(l), . . . 7 X ß , ( l ) ( ~ ~ ( l ) ) ,  . . ., Xß,(M)(l), - .  . ,X~„M)(N,(M))) 
= h#(X,(1,1), . ..,X,(I,N,(,)), . . . , X i ( ~ , l ) ,  .. . , X i ( ~ , ~ , ( ~ ) ) )  

= b-y(h#)(X1,. . . ,X,)  
= H(Xl,  . . . , Xn). 

2.3. In preparation for the next theorem we introduce four special relations on the 
power set P(A): 

C := {(B,C)  I B C C )  (inclusion relation), 

e0 := (01, 
@A := {{a} 1 a E A} (singleton relation) , 
eo := {(@,C, D)  I C , D  E P(A)) U {(B,C,C)  I B , C  E P(A),  B f 01, 

or equivalently 

eo := { ( B , C , D ) I B , C , D E P ( A ) , C f  D * B = @ ) ,  

i.e., eo is a "@-check relation". 

Without difficulties one shows (cf. 1.4) 

consequently 

c lonep(~)  (02)  C P ~ ~ P ( A ) { C ,  00, e a ,  eo). 

Remark. The clones P o ~ ~ ( ~ ) { C )  and P o ~ ~ ( ~ ) { Q ~ )  are known to be maximal clones 
(coatoms) in the lattice of all clones on P(A) (cf. e.g. [Pös-K 79; 4.3.5, 4.3.71). 

T h e o r e m  2.4 ForfiniteA, 

P r o o f .  Because of 2.3 and 2.2 it remains to show Pol {C, ~ 0 ,  QA, eo} C b(0:). Let 
F E P o ~ ~ ( ~ ) { C ,  e0, e A ,  eo} be an arbitrarily chosen n-ary operation. 
W.1.o.g. we assume that F has no fictitious variables, which can always be produced 
by place transformations if F has at least one essential variable (note that all variables 
cannot be fictitious since in that case F must be a constant preserving ~ 0 ,  i.e. F would 
be constant 0 in contradiction to F E Pol eA). 
Claim 1: F satisfies F ( B l , .  . . , B,) f 0 U B; f 0 for all i E (1,. . . ,n) .  



298 J. Brunner, Th. Drescher, R. Pöschel, H. Seidel 

In fact, if bl E B i , .  . . , b, E B, then F ( B l ,  .. . , B,) > F({bl), . . . , {b,)) E QA since 
F preserves C and QA, consequently F ( B l , .  . . , B,) # 0. Conversely, let B j  = 0 
for some j E { I , .  . . , n). Since F depends essentially on all its variables, there exist 
C; E P ( A )  for 1 < i < n and a Ci  E P ( A )  such that  C j  # Ci  and D # D', where 
D := F ( C l , .  . . , Cj-1, Cj ,  C j+ l , .  . . , C,) and D' := F(C1, .  . . , Cj-1, C;,Cj+l, .  . .,C,). 
Since F preserves QO and (B i ,  Cl ,  Cl) ,  . . . , (0, Cj, Ci) ,  . . . , (B,, C,, C,) E Po we get 
(F (B1 , .  . . , B,), D ,  D') E Po. Thus F(B1, .  . . ,B,)  = 0 because D # D' and by the 
definition of QO. 

Claim 2: F E 6(0$). 
We shall construct suitable (Y and f E OA such that  F = 6, ( f#) .  Let A = {al,  . . . .ak) 
and k 2 2 (the case k = 1 is trivial). For each B C A with 1B1 2 2, choose k pairwise 
different k-tupel bf , . . . , bf E such that  

(e.g., fix bo E B and let b$ := bo U i = j ;  the other components are taken arbitrarily 
but according to the stated condition). 
Thus, for B,  C C A, we have 

(*I b B  = bc 3 , B = C and i = j .  

In case 1 B1 = 1, i.e. B = {b), we put b r  := (b, . . . , b), the unique element of ( i  = 
1 ,..., k). Moreover, for nonempty B i , .  . ., B, C A we fix an element a(B„ ..., B,) E 
F ( B l ,  . . . , B,) (this is possible because of claim 1). 

Now we are ready to define an nk-ary operation f : A~~ - A as follows: 
For each k-tuple c j  = (cjl,.  . . ,cjk) E Ak ( j  = 1 , .  . . , n )  let C, = {cjl,.  . . ,cjk) denote 
the set of its components. 
Put  

if CI = b?,.. . ,C,  = b? 
and a; E F(C1, ..., C,), 

f(cll,...,Clk~...,Cnl,...,~nk) := i E { I ,  ..., k), 

a(c1 ,..., C,) otherwise. 

f is weU-defined because of (*) whenever at  least one C; contains more than one 
element . In case (Cl I = . . . = IC,I = 1 we have I F (C l ,  . . . , C,) I = 1 (since F preserves 
Q*) and therefore f is well-defined, too. 
Finally, we will show 

for arbitrary B I , .  . . , B, E P (A) ,  i.e. F = 6, ( f# )  for a suitable place transfor~nation 
(Y, and we are done. 

In order to  prove (**), note that  (**) holds if a t  least one B; equals 0 (then the 
left-hand side is 0 by definition of f #  and the right-hand side equals 0 by claim 1). 
Thus let B I , .  . . , B, be nonempty and C E f #  (BI , .  . . ,B1 , .  . . , B,,. . . , B,). By def- 
inition of f and f # ,  either C = U; E F(B1, .  . . ,B, )  or C = U(B; ,..., B;) for suitable 
Bi C B I , .  . . ,B;  C B,, i.e. C E F ( B i , .  . . ,BA) C F ( B l , .  . . , B,), in any case C E 
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F(B1, .  . . , B,). Conversely, if C €F(B1 , .  . . , B,) then C = a; for some i E (1, .  . . , k) 
B* - B and C = f (bßl, . . . , bi )- f (b,,], . . . , b z ,  . . . , bzn, . . . , b;k") by definition of f ,  i.e. C E 

f #  (Bi , .  . . , B i , .  . . , B „ .  . .,B,). This proves (**). 

Theorem 2.4 does not hold for infinite A since every clone of the form Pol(. . .) must 
be " locdy closedn(cf. e.g. [Pös 79]), however, it remains as Open question whether the 
"local closure" of the left-hand side of Theorem 2.4 will do the job. 

3. Lifted relations 

In this section we study in more detail the behaviour of operations and corresponding 
invariant relations under the process of lifting. 

Remarks 3.1 a) For C An" the lifted relation e# C P(A)" was defined in 1.3. We 
give here a further equivalent characterization in order to show that this notion is more 
canonical than it might look a t  first glance. 
Any family F of functions f : A -+ B gives rise to  a function Ft : A + P ( B )  : 
a - {f(a)  I f E F). 
Considering r E Am as a mapping r : {I , .  . . , m) + A, every U C An' is a set of 
mappings r : { I , .  . . , m) + A and the corresponding function ut is a mapping 

i.e. ut E P(A)m is an element of an m-ary relation on P(A).  With these notations we 
have 

which is, in fact, a power construction. 
b) As it is weU-known, any m-ary function f can be considered as an ( m  f 1)-ary 

relation f*.  Hence there are two possibilities for lifting functions. But in general we 
have the following inequality: 

To show this we look a t  a simple example: Let A be the set {0,1) and f the (logical) 
disjunction. Then (0, {O),@) belongs to (f#)' but not to (f*)# and on the other hand 
(A, A, (1)) belongs to (f*)# but not to (f#)*. 

The following proposition is an important tool for further investigations. It shows 
that lifting is compatible with the preservation property. 

P r o p o s i t i o n 3.2 For f E OAand e E RA we have: f preserves ifl f #  preserves 
e#.  

P r o o f .  One direction is obvious: if f #  E  PO^^(^) e# then f E PolA Q (consider the 
one-element subsets of A only and note (al ,  . . . ,um) E Q ({al), . . . , {U,)) E e# 
arid f ( { a ~ ) , . . . . . . , { a n ) ) =  { f ( a i , . . . , a n ) ) ) .  
Thus, let f E PolA e, f E OY', e E R L ~ ) .  Consider n elements of e#: 
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and define B; := f # ( ~ ; ~ ,  . . . , Ai,) for i = 1, .  . . ,m.  In order to prove f #  E Po le#  we 
have to show (Bl , .  . . , B,) E e#,  which we shall do with the condition in 1.3(i). 
For b E B;, consider a l  E Ail , . . . , an E A;, with b = f (a l  , . . . , an) .  Because (Al j, . . . 
. . . , Amj) E e#,  for every j E (1, .  . . , n) there exists (a l j ,  . . . ,a,j) E n A l j x . .  . xAmj 
with a;j = aj .  Since f preserves Q we get ( f (a l l ,  . . . , aln),  . . . , f (aml, . . . , amn))  E 
p n  B ~ x ~ ~ ~ x B m , c o n s e q u e n t l y  b =  f(ai1, ..., a ; , ) ~  {aI B l x ~ ~ ~ x B ; - l x { a ) x B ; + l x  
. . X B, n e # 0) and we are done by 1.3(i). 

As an immediate consequence of 3.2 and 2.2 we get: 

C o r o l l a r y  3.3 LetQ C RA. Then 

P r o b 1 e m 3.4 The characterization in 3.3(b) of the clone generated by (PolA Q)# 
has a flaw. If a clone C is given by relations, i.e. C = Pol Q,  then one would like to  
characterize the lifted clone also by relations only. Obviously 

(*I 6(0f n P O ~ P ( A )  Q#)  C 6(0f) n POEP(A) 4' 
where the right-hand side is equal to  

Pol{&, e0, e ~ ,  eo) n pol Q# = PO~P(A)(Q# U ( 5 ,  eg, e ~ ,  e01) 

due to  Theorem 2.4. 
The problem arises whether equality holds in (*), i.e. whether the relations in Q# and 
{C, e0, PA, eo) suffice to  characterize the clone 6((PolA Q)#) .  A counterexample due 
to  F. Börner (personal communication) shows that equality caniiot hold in general; 
however, we conjecture an affirmative answer with some modification using additional 
relations directly constructed from Q. Note that every clone 2 in O P ( ~ )  can be char- 

acteriz,ed as P 0 1 p ( ~ )  $ by some set $ C RP(A) of relations. However, it is a serious 

problem for 2 = ~ ( ( ~ 0 1  Q)#)  how $ can be constructed from Q without knowing 2. 
The above conjecture and 3.3 are attempts to solve this problem. 

4. Multifunctions 

The lifting process f - f #  can be applied to operations f E OA as well as to 
several generalizations, e.g. to partial functions or, more generally, to  multifunctions. 

D e f i n i t i o n 4.1 For any set A, a function 

is called an n-ary multifunction (or multioperation) on A. 

Reinark. Multifunctions and tnultialgebras (i.e. algebras with multioperations instead 
of usual operations) are tnodels for nondeterministic processes. They include partial 
functions (if every image f ( a l , .  . . , a n )  is either a one-element set or empty). 

D e f i n i t i o n 4.2 For a tnultioperation f : An -+ P ( A )  define 
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by 

f # ( ~ i , . . . ,  B,) := U {f(bi,. . . ,bn)  I b i  E B i ,  .. . , b n  E B,}. 

Note that f #  - the lifted operation - is an ordi~iary (total) n-ary functioii on the power 
set. Therefore multialgebras can be considered as ordinary algebras on the power set 

P(A).  

Many results for clones and invariant relations can be generalized to  multioperations. 
For more details we refer to  [Dre 931 where among other things clones of multioperations 
are studied. Here we mention only those results which are in parallel to the results in 
Sections 2 and 3. 
4.3. For E RA, a multioperation f : An --, P(A)  preserves 

(or is invariant for f )  if 

{(a l l , .  ..,a~~i),---~(ain,..-,amn)} G @ 

implies 

(f(ail,...,aln),...,f(aml,-..,amn)) E Q'. 

Let MA denote the set of all multifunctions (of arbitrary finite arity) on A.  Put  
PolmA e := {f E MA I f preserves P } .  Then we have: 

P r o p o s i t i o  n 4.4 6 ( ~ , # )  = POE~(~)  {C, po}, where po is the ternary relation 

e o = { ( B , C , D ) I C # D *  B = @ }  

as defined in 2.3. 

P r o p o s i t i o n 4.5 A multifunction f E MA preserves Q E RA 
i g f #  preserves @# (i.e. ( P o ~ ~ A  = M,# n  PO^^(^)@#). 

We oniit the proofs and refer to [Dre 931. 
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Zusammenfassung 

Jede Operation bzw. Relation auf einer Grundmenge A kann auf die Potenzmenge P ( A )  
"geliftet" werden. In dieser Arbeit wird das Verhalten von Operationenklonen und zugehörigen 
invarianten Relationen bei diesem Liftprozeß untersucht (z.B. wird der von den gelifteten Op- 
erationen eines Klons erzeugte Klon intern durch 6-Abgeschlossenheit (Thin. 2.2) und extern 
durch spezielle invariante Relationen (Thm. 2.4, 3.3) charakterisiert). Einige Verallgeirieinerun- 
gen auf Multifunktionen werden aufgezeigt. 
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