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Communication	on	CC2538	System	on	Chip	(SoC)

2
Wireless	radioSerial	buses

Advanced	high-
performance	bus	(AHB)

USB	1.x	(for	programming)



Goal	of	Today’s	Lecture

• Communication	with	peripherals:	serial	buses
• Communication	between	microcontrollers:	interconnects
• Communication	between	devices:	low-power	wireless	
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Serial	Buses	on	an	Embedded	Platform
• Universal	asynchronous	receiver/transmitter	(UART)
• In	embedded	systems	often	realized	via	bit	banging:	setting	and	sampling	pins		
and	configuring	signal	timing,	levels,	and	synchronization	purely	in	software
• A	dedicated	UART	handles	these	tasks	and	provides	(buffered)	data	transfers

• Serial	peripheral	interface	(SPI)
• Widely	used	to	connect	peripherals	(e.g.,	LCD,	sensor,	radio)	to	microcontroller

• Inter-integrated	circuit	(I2C)	– pronounced	“I-squared-C”
• Used	to	connect	lower-speed	peripherals	(e.g.,	power	switch,	access	to	low-
speed	analog-to-digital	converters	and	clocks,	configuring	displays	and	speakers)
• Requires	fewer	pins	and	signals	than	SPI	(only	two	pins),	but	at	most	3.4	Mbps

• Inter-IC	sound	(I2S)	– pronounced	“I-squared-S”
• Used	for	digital	audio	communication	via	pulse	code	modulation	(PCM)
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SPI:	Overview

• Provides	synchronous serial communication	over	short	distances
• Serial:	One	bit	at	a	time	rather	than	multiple	bits	in	parallel
• Synchronous:	transmission	of	each	bit	is	aligned	with	a	common	clock	signal

• First	described	by	Motorola	in	late	1980s	(only	hardware	operation)
• No	standard/patent/license,	no	definition	of	software	protocol
• Good:	widely	adopted,	de-facto	standard	for	connecting	peripherals	to	a	
microcontroller	(memory	cards,	real-time	clocks,	cameras,	sensors,	ADC/DAC)
• Bad:	lack	of	standard	tools	due	to	many	different	variants	(e.g.,	word	sizes)

• Very	simple	hardware	interfacing	and	software	implementation
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SPI:	Capabilities
• Always	full-duplex	communication
• Communication	in	both	directions	simultaneously
• Transmitted	(or	received)	data	may	not	be	meaningful

• High	transmission	speeds
• 10s	of	MHz	clock	frequencies	are	not	uncommon
• SPI	itself	incurs	no	overhead	(no	in-band	addressing,	no	error	control),	but	
connected	peripheral	device	may	do	(e.g.,	addressing),	reducing	the	goodput

• Master-slave	architecture	with	multiple	slaves
• Master	selects	slave	before	initiating	transmission

• Typically	8-bit	word	size,	but	other	sizes	are	also	possible	and	common
• Examples:	16	bit	for	touchscreen	controllers,	12	bit	for	ADCs	and	DACs	
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SPI:	Wiring	and	Responsibilities

• Typically	4	wires
• Master-Out,	Slave-In	(MOSI):	carries	data	out	of	master	to	slave
• Master-In,	Slave-Out	(MISO):	carries	data	out	of	slave	to	master
• System	Clock	(SCLK):	synchronizes	data	transfer
• Slave	Select/Chip	Select	(SS/CS):	unique	line	to	select	each	slave

• Responsibilities	of	master
• Generate	SCLK
• Assert	SS/CS	line	(e.g.,	to	select	one	out	of	multiple	slaves)
• Initiate	data	transfer	(also	if	it	only	acts	as	receiver)
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SPI:	Data	Transfer	via	Shift	Registers
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• One	shift	register	per	master	or	slave	for	both	sending	and	receiving
• Master	shifts	out	data	to	slave,	and	shifts	in	data	from	slave
• Received	data	are	available	in	the	same	register	as	transmitted	data

• Typically	the	most-significant	bit	(MSB)	comes	first
• Some	microcontrollers	(e.g.,	Atmel	AVR)	allow	to	configure	in	software	
whether	the	MSB	or	the	least-significant	bit	(LSB)	comes	first



SPI:	Configurations	with	a	Single	Slave
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• 4-wire	master-slave

• 3-wire	master-slave
• SS/CS	connected	to	ground	(i.e.,	slave	is	always	selected	due	to	active-low)



SPI:	Configurations	with	Multiple	Slaves

• Master	and	multiple	independent	slaves
• Independent	SS/CS	line	for	each	slave
• MISO	pins	must	be	tristate

• High	(1),	low	(0),	high-impedance	(neither	0	nor	1)
• Typical	configuration

• Master	and	multiple	daisy-chained	slaves
• First	slave	output	connect	to	second	slave	input,	etc.
• Slaves	send	copy	of	received	data,	with	a	small	delay	
• Example:	JTAG	for	on-chip	debugging
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SPI:	Modes
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• Four	modes	determined	by	possible	combinations	of
• Polarity,	as	determined	by	CPOL	configuration	bit
• Phase,	as	determined	by	CPHA	configuration	bit

• CPOL	=	0:	clock	signal	is	0	in	idle	state	and	1	in	active	state
• CPHA	=	0:	data	captured	on	rising	edge	and	output	on	falling	edge
• CPHA	=	1:	data	captured	on	falling	edge	and	output	on	rising	edge

• CPOL	=	1:	clock	signal	is	1	in	idle	state	and	0	in	active	state
• CPHA	=	0:	data	captured	on	falling	edge	and	output	on	rising	edge
• CPHA	=	1:	data	captured	on	rising	edge	and	output	on	falling	edge



SPI:	One	Transfer	Cycle	for	Different	Modes
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SPI:	Example	Configuration	on	Atmel	AVR
• Enable	SPI transfer	on	Atmel	AVR	running	at	16	MHz	such	that
• Atmel	AVR	(i.e.,	microcontroller)	is	master
• SPI	clock	frequency	1	MHz
• SPI	interrupt	disabled
• MSB	first
• Polarity	0
• Data	capture	on	rising	edge	
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SPI:	Pros	and	Cons

• Pros
• Fast	point-to-point	communication	(no	defined	maximum	clock	frequency)
• Easily	allows	for	streaming,	even	in	both	directions	(arbitrary	message	size)
• Simple	software	implementation	(e.g.,	no	in-band	addressing)
• Simple	hardware	interfacing,	typically	lower	power	requirements	than	I2C
• Broadly	supported

• Cons
• Out-of-band	“addressing”	via	SS/CS	makes	multiple	slaves	more	complex
• No	acknowledgment	by	slave	(master	has	no	clue)
• No	flow	control,	so	master	must	know	slave	speed	(and	adapt	to	it)
• No	error	detection	or	recovery	protocol	defined	
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Goal	of	Today’s	Lecture

• Communication	with	peripherals:	serial	buses
• Communication	between	microcontrollers:	interconnects
• Communication	between	devices:	low-power	wireless	
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Trend	Toward	Multi-processor	Platforms	(1)

• Real-world	networked	embedded	applications	become	increasingly	
more	sophisticated,	featuring	both	heavy	and	light	tasks.
• Characteristics	of	heavy	tasks (e.g.,	complex	data	preprocessing)
• Highly	performance	demanding
• Typically	perform	compute	operations
• Long	but	infrequently

• Characteristics	of	light	tasks (e.g.,	wireless	communication)
• Not	performance	demanding
• Typically	perform	I/O	operations
• Short	but	frequently
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Trend	Toward	Multi-processor	Platforms	(2)
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• Using	a	single	powerful	core	that	runs	at	high	frequencies	and	has	rich	
architectural	features	offers	poor	energy	efficiency	for	light	tasks.
• High	energy	overhead	in	entering	and	exiting	active	power	state	(frequent	light	
tasks	make	this	overhead	very	prominent	in	the	overall	energy	budget)
• High	idle	power	(light	tasks	are	not	compute-intensive,	so	core	spends	many	
short	periods	in	idle	state;	not	enough	time	to	switch	to	lower-power	state)
• Over-provisioned	performance	(lowest	possible	frequency	and	active	power	are	
limited	by	architecture	&	fabrication	process,	still	over-provisioning	to	light	tasks)

• Moreover,	it	is	extremely	difficult	to	provide	real-time	guarantees,	
especially	when	tasks	are	triggered	by	unpredictable	external	events.

Processor
RadioSensors



Trend	Toward	Multi-processor	Platforms	(3)

• Exploit	hardware	heterogeneity for	best	performance-power	tradeoff
• High-performance,	high-power	core	for	heavy	tasks	(e.g.,	high-rate	sensor	
data	acquisition	and	compute-intensive	local	preprocessing)
• Low-performance,	low-power	core	for	light	tasks	(e.g.,	executing	wireless	
communication	stack	and	interacting	with	the	radio	chip)
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Interconnect:	Shared	Bus	(e.g.,	AHB,	SPI,	I2C)

• Each	processor	must	manage	communication	state	locally
• Couples	processors	in	time,	power,	and	clock	domains
• Time:	both	need	to	engage	in	communication	at	the	same	time	(synchronous)
• Power:	both	need	to	be	in	active	power	state	at	the	same	time
• Clock:	both	need	to	agree	on	a	common	clocking	frequency
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Interconnect:	Shared	Memory

• Each	processor	must	manage	communication	state	locally
• Semaphores	to	handle	concurrent	reads	and	writes	on	shared	variables
• Spinlocks	make	execution	time	of	reads	and	writes	highly	non-deterministic

• Still	couples	processors	in	time,	power,	and	clock	domains
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Interconnect:	Dual-ported	Memory

• Supports	nearly	current	reads	and	writes	on	shared	variables
• Typically	expensive	(extra	circuitry)	and	based	on	volatile	memory	
technology	(e.g.,	VRAM,	SRAM),	so	needs	to	be	powered	all	the	time
• Still	couples	processors	in	clock	domain
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Bolt:	Stateful Processor	Interconnect
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• Decoupling through	asynchronous	message	passing	(FIFO	semantics)
• Time:	each	processor	can	independently	read	and	write	messages
• Power:	each	processor	can	independently	switch	power	states
• Clock:	each	processor	can	transfer	messages	at	its	preferred	clock	frequency

• Predictability through	bounded	execution	times	of	reads	and	writes
• Composability in	terms	of	both	hardware	and	software	components
• Using	several	components	together	does	not	change	their	individual	properties
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Bolt:	Avoiding	Bus	Contention
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Bolt:	Asynchronous	Message	Passing
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Bolt:	Bounding	Unavoidable	Interference
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From	Prototype	to	Dual-processor	Platform	(DPP)
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32-bit	ARM	Cortex-M4 @	72	MHz
48	Byte	Messages
4	MHz	SPI	Bus

BOLT

16-bit	CC430 SoC @	20	MHz
24	Byte	Messages
2	MHz	SPI	Bus

BOLT

Cortex-M4

CC430

http://www.bolt.ethz.ch/

Up	to	3.3	Mbps	throughput



Bolt:	Power	Decoupling
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Goal	of	Today’s	Lecture

• Communication	with	peripherals:	serial	buses
• Communication	between	microcontrollers:	interconnects
• Communication	between	devices:	low-power	wireless	
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Low-power	Wireless	Application	Space
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Application	Requirements
• Long	network	lifetime
• Typically	defined	as	time	until	the	first	node	runs	out	of	energy	
• Need	to	operate	autonomously	for	several	years

• High	end-to-end	reliability
• Defined	as	number	of	packets	received	over	those	sent	(packet	delivery	ratio)
• Enable	accurate	data	analyses	and/or	control	decisions

• Low	and/or	bounded	end-to-end	latency
• Defined	as	time	needed	to	transmit	packet	from	source	to	destination
• Enable	timely	data	analyses	and/or	real-time	control	decisions
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Example:	Freight	Railroad	Train	Monitoring
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• Goal:	timely	visibility	into	health	and	status	of	trains	to	improve	safety	
and	resource	utilization	while	reducing	maintenance	costs
• Derailments	due	to	cracked	wheels	are	a	major	concern
• More	than	1.4	million	railroad	cars	in	the	US,	most	without	on-board	power
• Use	wireless	sensors	to	detect	or	prevent	cracks	(predictive	maintenance)

• Network	lifetime	at	least	as	long	as	regular	maintenance	cycle	(5	years)
• End-to-end	reliability	and	latency	directly	impact	application	utility

US:	up	to	150	cars	and	2.7	km	in	length



Important	Application	Characteristics
• Communication	pattern

• Traffic	pattern

• Mobility	pattern	(				static	node,				mobile	node)
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Challenges	in	Low-power	Wireless
• Limited	resources
• Radio:	250	kbps
• MCU:	8-32	bit,	4-72	MHz
• Memory:	4-32	kB	RAM
• Energy:	batteries	and/or	harvesting

• Multi-hop	communication
• Because	radio	range	is	<100	m

• Unpredictable	link	and	network	dynamics
• Fading	(variation	in	signal	attenuation	due	to	multi-path	or	obstacles)
• Interference	(e.g.,	from	Wi-Fi,	microwaves,	baby	monitors)
• Node	mobility	and/or	failures
• Environmental	factors	(e.g.,	varying	ambient	temperature)

34

source

destination



Dynamics	of	Low-power	Wireless	Links
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Links	are	only	stable	for	a	short
time (i.e.,	10s	of	milliseconds)

Time	(seconds)
2 4 6 108

Intermediate	links have	highly
varying	packet	reception	rate
between	10%	and	90%

During	the	day,	when	temperature
is	high,	packet	reception	rate	
decreases	significantly



Communication	Requirements
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Efficient

µW

Predictable	(in	particular	to
support	CPS	applications)

Versatile	(support	multiple	communication	patterns)
Adaptive	(to	changes	in	traffic	pattern	and	network	dynamics)



Low-power	Wireless	Communication	Stack
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Low-power	Wireless	Communication	Stack
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IEEE	802.15.4	Physical	Layer	(1)
• IEEE	802.15.4
• Standard	for	low-rate	wireless	personal	area	networks,	defined	in	2003
• Specifies	physical	and	media	access	layers,	but	latter	not	widely	adopted
• Serves	as	basis	for	higher-layer	standards	(e.g.,	ZigBee,	6LoWPAN)

• Most	common	802.15.4	physical	layer
• 16	channels	within	2.4	GHz	industrial,	scientific,	and	medical	(ISM)
• 250	kbps	data	rate,	using	DSSS	and	O-QPSK	(see	next	slide)
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IEEE	802.15.4	Physical	Layer	(2)
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Direct	sequence	spread	spectrum	(DSSS)
adds	redundancy,	which	helps	recover
correct	symbol	despite	corrupted	chips

Even-indexed	chips	modulate in-phase	(I)
Odd-indexed	chips	modulate	quadrature-phase	(Q)

Each	chip	has	a	half-sine	pulse	shape



IEEE	802.15.4	Physical	Layer	(3)

• Each	chips	generates	a	90	degrees	phase	change	every	𝑇" = 0.5µs
• Data	rate:	1/𝑇" chip/s	=	2	Mchip/s	=	62.5	ksymbol/s	=	250	kbps
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Low-power	Wireless	Communication	Stack
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Low-power	Wireless	Media	Access

43http://www.st.ewi.tudelft.nl/~koen/MACsoup/taxonomy.php

The	MAC	Alphabet	Soup
discussed
next	week



Summary	of	Today’s	Lecture
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• Communication	with	peripherals:	serial	buses
• SPI	de-facto	standard

• Communication	between	microcontrollers:	interconnects
• Type	of	interconnect	affects	predictability,	energy	efficiency,	software	complexity

• Communication	between	devices:	low-power	wireless	
• Many	powerful	applications,	but	also	significant	challenges	to	realizing	them
• IEEE	802.15.4	physical	layer	popular	for	short-range,	low-rate	low-power	wireless


