
Networked	Embedded	Systems	WS	2016/17

Lecture	2:	Real-time	Scheduling

Marco	Zimmerling

Goal	of	Today’s	Lecture

• Introduction	to	scheduling	of	compute	tasks	on	a	single	processor
• Tasks	need	to	finish	before	specified	deadlines
• Preemptive	real-time	scheduling	algorithms	for	periodic	and	aperiodic	tasks

• Scheduling	is	everywhere
• Processes	in	operating	system	kernel	(e.g.,	Completely	Fair	Scheduler	in	Linux)
• Large	compute	jobs	in	a	datacenter	(e.g.,	Apache	Mesos)
• Packet	flows	in	a	middlebox (e.g.,	providing	filtering,	firewalling,	VPN,	etc.)
• …

• Other	related	topics	include	load	balancing	and	queuing

2

Literature	on	Real-time	Scheduling

• Recommended:
• Giorgio	C.	Buttazzo,	Hard	Real-time	Computing	Systems:	Predictable	
Scheduling	Algorithms	and	Applications,	Third	Edition,	Springer-Verlag,	2011	
(freely	available	online)

• Further	reading:
• Lui Sha,	Tarek	F.	Abdelzaher,	Karl-Erik	Årzén,	Anton	Cervin,	Theodore	Baker,	
Alan	Burns,	Giorgio	Buttazzo,	Marco	Caccamo,	John	Loheczky,	and	Aloysius	
Mok,	Real-Time	Scheduling	Theory:	A	Historical	Perspective,	Real-Time	
Systems,	vol.	28,	no.	2-3,	pp.	101-155,	2004
• Giorgio	C.	Buttazzo,	Rate	Monotonic	vs.	EDF:	Judgment	Day,	Real-Time	
Systems,	vol.	29,	no.	1,	pp.	5-26,	2005	

3

Basic	Scheduling	Concepts
• A	task is	a	computation	that	is	executed	by	the	processor	in	a	
sequential	fashion.
• A	scheduling	algorithm determines	the	order	in	which	tasks	that	can	
overlap	in	time	are	executed	on	the	processor.
• The	operation	of	suspending	the	running	task	and	inserting	it	into	the	
ready	queue	is	called	preemption.

4

activation dispatching termination

preemption

processorready	queue

…
tasks active	/	ready

tasks
running
tasks

Definition	of	Schedule
• Given	a	set	of	tasks,	𝐽 = 𝐽#, … , 𝐽&	 ,	a	schedule is	an	assignment	of	
tasks	to	the	processor,	so	that	each	task	is	executed	until	completion.
• Formally,	a	schedule	is	an	integer	step	function	𝜎 ∶ 	ℝ+ → ℕ,	where
• 𝜎 𝑡 = 𝑘 means	that	the	processor	executes task	𝐽0 at	time	𝑡,	and
• 𝜎 𝑡 = 0means	that	the	processor	is	idle at	time	𝑡.

5

context	switch:	time	𝑡
at	which	𝜎(𝑡) changes

time	slice:	interval	[𝑡5, 𝑡5+#)
in	which	𝜎(𝑡) is	constant

Important	Attributes
• A	preemptive schedule	is	a	schedule	
in	which	the	running	task	can	be	
arbitrarily	suspended	at	any	time	to	
assign	the	processor	to	another	task.
• A	schedule	is	said	to	be	feasible if	all	
tasks	can	be	completed	according	to	
a	set	of	specified	constraints.
• A	set	of	tasks	is	said	to	be	
schedulable if	there	exists	at	least	
one	scheduling	algorithm	that	can	
produce	a	feasible	schedule.

6

Types	of	Task	Constraints
• Timing	constraints:	tasks	need	to	complete	before	given	deadlines
• Precedence	constraints:	tasks	need	to	execute	in	a	given	order

• Resource	constraints:	tasks	need	to	execute	on	given	resources	(e.g.,	
data	structure,	piece	of	a	program,	memory	area,	peripheral	device)

7

in	this
course

Tasks	with	Timing	Constraints

• A	typical	timing	constraint	on	a	task	is	a	deadline,	representing	the	
time	before	which	the	task	should	complete	its	execution.
• A	task	is	called	a	real-time	task if	it	is	subject	to	a	specified	deadline.
• Depending	on	the	consequences	of	a	missed	deadline,	real-time	tasks	
can	be	classified	into	two	main	categories:
• A	real-time	task	is	said	to	be	hard if	missing	its	deadline	may	cause	
catastrophic	consequences	on	the	system	under	control	(e.g.,	sensing,	
actuation,	and	control	tasks	in	a	cyber-physical	system).
• A	real-time	task	is	said	to	be	soft if	missing	its	deadline	does	not	cause	any	
serious	damage	and	has	still	some	utility	for	the	system;	that	is,	a	deadline	
miss	is	considered	a	performance	issue,	not	an	issue	of	correct	behavior	(e.g.,	
tasks	related	to	user-system	interactions	on	a	smartphone).

8

Parameters	of	Real-time	Tasks	(1)
• Arrival	time 𝑎5 (or	release	time 𝑟5)	is	the	time	at	which	a	task	becomes	
ready	for	execution.
• Start	time 𝑠5 is	the	time	at	which	a	task	starts	its	execution.
• Execution	time 𝐶5 is	the	time	needed	by	the	processor	to	execute	a	
task	without	interruption.
• Finishing	time 𝑓5 is	the	time	at	which	a	task	finishes	its	execution.
• Absolute	deadline 𝑑5 is	the	time	by	which	a	task	should	be	completed.

9

time𝑎5 𝑠5

𝐶5

𝑓5 𝑑5

Parameters	of	Real-time	Tasks	(2)
• Relative	deadline 𝐷5 is	the	difference	between	the	absolute	deadline	and	
the	arrival	time	of	a	task,	that	is,	𝐷5 = 𝑑5 − 𝑎5.
• Response	time 𝑅5 is	the	difference	between	the	finishing	time	and	the	
arrival	time	of	a	task,	that	is,	𝑅5 = 𝑓5 − 𝑎5.
• Lateness 𝐿5 = 𝑓5 − 𝑑5 represents	the	delay	of	a	task	completion	with	
respect	to	its	deadline	(i.e.,	𝐿5 ≤ 0 if	task	completes	by	its	deadline).
• Tardiness 𝐸5 = max	(0, 𝐿5) is	the	time	a	task	stays	active	after	its	deadline.
• Laxity 𝑋5 = 𝑑5 − 𝑎5 − 𝐶5 is	the	maximum	time	a	task	can	be	delayed	on	
its	execution	in	order	to	complete	within	its	deadline.

10time𝑎5

𝑅5

𝑓5 𝑑5

𝐷5

• Execution	times:	𝐶# = 12,	𝐶H = 10
• Start	times:	𝑠# = 0,	𝑠H = 8
• Finishing	times:	𝑓# = 22,	𝑓H = 28
• Lateness:	𝐿# = −2,	𝐿H = 1
• Tardiness:	𝐸# = 0,	𝐸H = 1
• Laxity:	𝑋# = 12,	𝑋H = 11

Example:	Parameters	of	Real-time	Tasks

11

𝑎# 𝑑#

0 5 10 15 20 25

𝑎H 𝑑HTask	𝐽# Task	𝐽H

Periodic	and	Aperiodic	Tasks
• A	periodic	task	𝜏5 consists	of	an	infinite	sequence	of	identical	activities,	
called	instances	or	jobs,	that	are	regularly	activated	with	a	constant	
period 𝑇5.	The	arrival	time	of	the	first	instance	is	called	phaseΦ5.
• We	use	𝜏5 to	denote	a	periodic	task	and	𝐽5 to	denote	an	aperiodic	task.

12

Classification	of	Scheduling	Algorithms	(1)

• Using	a	preemptive algorithm,	the	running	task	can	be	interrupted	at	
any	time	to	assign	the	processor	to	another	active	task.
• Using	a	non-preemptive algorithm,	a	task,	once	started,	is	executed	by	
the	processor	until	completion.
• Static algorithms	are	those	in	which	scheduling	decisions	are	based	on	
fixed	parameters	that	are	assigned	to	tasks	before	their	activation.
• Dynamic algorithms	are	those	in	which	scheduling	decisions	are	based	
on	dynamic	parameters	that	may	change	during	system	operation.

13

Classification	of	Scheduling	Algorithms	(2)

• An	algorithm	is	used	offline if	it	is	executed	on	the	entire	task	set	
before	any	task	activation.	The	generated	schedule	can	be	stored	in	a	
table	and	then	executed	at	runtime	by	a	dispatcher.
• An	algorithm	is	used	online if	scheduling	decisions	are	taken	at	
runtime	every	time	a	new	task	enters	the	system	or	when	a	running	
task	terminates.
• An	algorithm	is	said	to	be	optimal it	it	minimizes	a	given	cost	function	
defined	over	the	task	set.
• An	algorithm	is	said	to	be	heuristic if	it	tends	toward	the	optimal	
schedule,	but	does	not	guarantee	finding	it.

14

Schedulability Analysis
• In	hard	real-time	applications,	feasibility	of	the	schedule	should	be	
guaranteed	in	advance	(i.e.,	before	task	execution).
• Can	be	checked	offline	if	task	set	is	fixed	and	known	a	priori.
• Must	be	checked	online	if	tasks	can	be	created	at	runtime	(acceptance	test).	

15

Domino	effect:	if	task	𝐽&MN were
accepted	at	time	𝑡O,	all	other	
(previously	schedulable)	tasks
would	miss	their	deadline.	

Example	Cost	Functions

• Average	response	time:	𝑡PQ =
#
&
∑ (𝑓5 − 𝑎5)&
5S#

• Total	completion	time:	𝑡T = max
5

𝑓5 − min
5
(𝑎5)

• Weighted	sum	of	finishing	times:	𝑡N = ∑ 𝑤5𝑓5&
5S#

• Maximum	lateness:	𝐿XYZ = max
5
(𝑓5 − 𝑑5)

• Maximum	number	of	late	tasks:	𝑁\Y]M = ∑ 𝑚𝑖𝑠𝑠(𝑓5)&
5S#

where									𝑚𝑖𝑠𝑠 𝑓5 = ` 0	if	𝑓5 ≤ 𝑑5
1	otherwise

16

possibly	useful	for	hard	
real-time	systems,	but	…
(see	slide	after	the	next)

• Average	response	time:	𝑡PQ =
#
&
∑ 𝑓5 − 𝑎5 = #

H
&
5S# 22 + 20 = 21

• Total	completion	time:	𝑡T = max
5

𝑓5 − min
5
(𝑎5) = 28 − 0 = 28

• Weighted	sum	of	finishing	times:	𝑡N = ∑ 𝑤5𝑓5&
5S# = 2×22 + 1×28 =72

• Maximum	lateness:	𝐿XYZ = max
5
(𝑓5 − 𝑑5) = max

H
(−2,1) = 1

• Maximum	number	of	late	tasks:	𝑁\Y]M = ∑ 𝑚𝑖𝑠𝑠(𝑓5)&
5S# = 0 + 1 = 1

where									𝑚𝑖𝑠𝑠 𝑓5 = ` 0	if	𝑓5 ≤ 𝑑5
1	otherwise

Example:	Cost	Functions

17

𝑎# 𝑑#

0 5 10 15 20 25

𝑎H 𝑑HTask	𝐽# Task	𝐽H

Example:	Maximum	Lateness	vs.	Deadline	Misses

• Schedule	in	(a)	minimizes	maximum	lateness,	but	all	tasks	miss	deadline.
• Schedule	in	(b)	has	higher	maximum	lateness,	but	only	one	deadline	miss.	

18

(a)

(b)

Overview	of	Scheduling	Algorithms

19

Scheduling
Algorithms

Aperiodic
Tasks

Periodic
Tasks

Preemptive Non-
preemptive

Non-
preemptivePreemptive

in	this
course

in	this
course

Earliest	Deadline	Due	(EDD)

• Preemptive scheduling	of	aperiodic	tasks	𝐽5	with	equal	arrival	times
• We	assume	all	tasks	arrive	at	time	𝑡 = 0 (i.e.,	𝑎5 = 0 for	all	tasks	𝐽5).
• Thus,	each	task	𝐽5 is	characterized	by	its	execution	time	𝐶5 and	relative	deadline	𝐷5.
• Note:	Preemption	is	not	an	issue	if	all	tasks	arrive	at	the	same	time!

• Jackson’s	rule:	Given	a	set	of	𝑛 real-time	tasks,	any	algorithm	that	
executes	the	tasks	in	order	of	non-decreasing	deadline	is	optimal	with	
respect	to	minimizing	the	maximum	lateness	of	the	task	set.

20

Example:	Feasible	Schedule	Produced	by	EDD

21

Example:	Infeasible	Schedule	Produced	by	EDD

22

EDD	Schedulability Test

• To	guarantee	that	scheduling	a	set	of	tasks	using	EDD	produces	a	
feasible	schedule,	we	need	to	show	that	in	the	worst	case	all	tasks	
can	complete	before	their	deadlines,	that	is,	𝑓5 ≤ 𝑑5 for	all	tasks	𝐽5.
• If	tasks	𝐽#, 𝐽H, … , 𝐽& are	ordered	by	increasing	deadline,	we	have

𝑓5 = ∑ 𝐶05
0S#

• Thus,	the	EDD	schedulability test	can	be	performed	(offline)	by	
verifying	for	each	task	𝐽5

∑ 𝐶05
0S# ≤ 𝑑5

23

Earliest	Deadline	First	(EDF)

• Preemptive scheduling	of	aperiodic	tasks	𝐽5	with	arbitrary	arrival	times
• Tasks	𝐽5(𝐶5, 𝐷5) arrive	dynamically,	so	preemption	is	an	important	factor.	

• Horn’s	rule:	Given	a	set	of	𝑛 real-time	tasks	with	arbitrary	arrival	
times,	any	algorithm	that	at	any	point	in	time	executes	the	task	with	
the	earliest	absolute	deadline	among	all	ready	tasks	is	optimal	with	
respect	to	minimizing	the	maximum	lateness.

24

Example:	Feasible	Schedule	Produced	by	EDF

25

EDF	Schedulability Test:	Approach	
• Similar	to	EDD,	but	the	test	must	be	done	online whenever	a	new	task	
𝐽&MN enters	the	system.	Thus,	assuming	the	current	set	of	tasks	𝐽 is	
schedulable,	we	need	to	check	if	𝐽l = 𝐽 ∪ 𝐽&MN is	also	schedulable.
• If	tasks	𝐽#, 𝐽H, … , 𝐽& are	ordered	by	increasing	deadline,	the	worst-case	
finishing	time	of	task	𝐽5 at	time	𝑡 is	given	by

𝑓5 = 𝑡 + ∑ 𝑐0(𝑡)5
0S#

• Here,	𝑐0 𝑡 is	the	remaining	worst-case	execution time	of	task	𝐽0.	It	is	
initially	equal	to	𝐶0,	but	may	have	a	lower	value	at	time	𝑡 when	𝐽&MN
arrives	since	task	𝐽0 (and	others)	may	have	been	partially	executed.
• Thus,	the	EDF	schedulability test	performed	online	at	time	𝑡 amounts	
to	verifying	for	each	task	𝐽5 ∈ 𝐽l

𝑡 + ∑ 𝑐0(𝑡)5
0S# ≤ 𝑑5 26

EDF	Schedulability Test:	Algorithm
edf_schedulability_test(J, Jnew){

J’= J	∪	{Jnew}; /* ordered by incr. deadline */
f0 = get_current_time();

for each Ji	∈	J’{
fi = fi-1 + ci(t);

if (fi > di){

return NOT_SCHEDULABLE;

}

}

return SCHEDULABLE;

}
27

Rate-monotonic	(RM)	Scheduling

• Preemptive scheduling	of	periodic	tasks 𝜏5 with
• phase	Φ5,	period	𝑇5,	relative	deadline	𝐷5,	and	(worst-case)	execution	time	𝐶5.

• Thus,	release	times	are	given	by	𝑟5,0 = Φ5 + (𝑘 − 1)𝑇5 and	absolute	deadlines	
are	given	by	𝑑5,0 = 𝑟5,0 + 𝐷5.	If	𝐷5 = 𝑇5 for	all	tasks,	we	have	𝑑5,0 = Φ5 + 𝑘𝑇5.

• Algorithm:	Given	a	set	of	𝑛 periodic	real-time	tasks	with	𝐷5 = 𝑇5,	
assign	a	fixed priority	to	each	task,	such	that	tasks	with	higher	request	
rates	(i.e.,	with	shorter	periods)	have	higher	priorities.	The	currently	
executing	task	is	preempted	by	a	task	with	higher	(fixed)	priority.

28

Example:	Infeasible	Schedule	Produced	by	RM

• Two	tasks	𝜏# and	𝜏H with
• Phases	Φ# = ΦH = 0
• Periods	𝑇# = 5 and	𝑇H = 7,	thus	task	𝜏# has	higher	priority	than	task	𝜏H
• Worst-case	execution	times	𝐶# = 2 and	𝐶H = 4

29

RM	Schedulability Test

• A	set	of	𝑛 periodic	real-time	tasks	is	schedulable	using	RM	if
∑ 𝐶5/𝑇5&
5S# ≤ 𝑛 2#/& − 1

• This	condition	is	sufficient	but	no	necessary.	That	is,	if	the	above	
condition	holds	for	a	given	task	set,	then	this	task	set	is	definitely	
schedulable	using	RM,	but	if	the	above	condition	does	not	hold,	then	
this	task	set	may	or	may	not	be	schedulable	using	RM.
• The	term	∑ 𝐶5/𝑇5&

5S# is	called	the	processor	utilization 𝑈 of	a	set	of	𝑛
periodic	real-time	tasks.	It	denotes	the	fraction	of	time	the	processor	
spends	executing	the	task	set	(i.e.,	the	computational	load).

30

RM	Example	Revisited:	Processor	Utilization
• Two	tasks	𝜏# and	𝜏H with
• Phases	Φ# = ΦH = 0
• Periods	𝑇# = 5 and	𝑇H = 7,	thus	task	𝜏# has	higher	priority	than	task	𝜏H
• Worst-case	execution	times	𝐶# = 2 and	𝐶H = 4

• Processor	utilization 𝑈 = ∑ 𝐶5/𝑇5 = 	
H
u

&
5S# + v

w ≈ 0.97 > 2 2
|
} − 1 ≈ 0.83

31

RM	Example	Revisited:	Sufficiency
• Two	tasks	𝜏# and	𝜏H with
• Phases	Φ# = ΦH = 0
• Periods	𝑇# = 4 and	𝑇H = 8,	thus	task	𝜏# has	higher	priority	than	task	𝜏H
• Worst-case	execution	times	𝐶# = 2 and	𝐶H = 4

• Processor	utilization	𝑈 = ∑ 𝐶5/𝑇5 = 	
H
v

&
5S# + v

� = 1 > 2 2
|
} − 1 ≈ 0.83

32

𝜏#

0 5 10 15 20 25

𝜏H

0 5 10 15 20 25

Schedulable	although
condition	does	not	hold

Earliest	Deadline	First	(EDF)

• Preemptive scheduling	of	periodic	tasks 𝜏5
• Algorithm:	A	dynamic priority	is	assigned	to	each	task,	such	that	tasks	
with	earlier	deadlines	have	higher	priorities.	The	currently	executing	
task	is	preempted	whenever	a	task	with	earlier	deadline	becomes	active.
• Using	EDF,	priorities	are	assigned	dynamically,	because	the	absolute	
deadline	𝑑5,0 of	a	periodic	task	𝜏5 depends	on	the	current	𝑘th instance

𝑑5,0 = Φ5 + 𝑘 − 1 𝑇5 + 𝐷5
• Using	RM,	the	priorities	are	fixed,	because	the	periods	𝑇5 are	constant.

33

EDF	Schedulability Test

• A	set	of	𝑛 periodic	real-time	tasks,	where	𝐷5 = 𝑇5 for	all	tasks	𝜏5,	is	
schedulable	using	EDF	if	and	only	if

∑ 𝐶5/𝑇5&
5S# ≤ 1

• This	condition	is	both	necessary	and	sufficient.

34

Example:	EDF	vs.	RM

35

• Two	tasks	𝜏# and	𝜏H with
• Phases	Φ# = ΦH = 0
• Periods	𝑇# = 5 and	𝑇H = 7
• Worst-case	execution	times	𝐶# = 2 and	𝐶H = 4

No	deadline	miss,	fewer
preemptions	due	to	dy-
namic priority	assignment

𝑈 ≈ 0.97 > 0.83

𝑈 ≈ 0.97 < 1

A	Note	on	Optimality

• RM	is	optimal among	all	fixed-priority	assignments	in	the	sense	that	
no	other	fixed-priority	algorithm	can	schedule	a	set	of	periodic	real-
time	tasks	that	cannot	be	scheduled	by	RM.
• EDF	is	optimal in	the	sense	that	no	other	algorithm	can	schedule	a	set	
of	periodic	real-time	tasks	that	cannot	be	scheduled	by	EDF.

36

• Correct	behavior	of	a	real-time	system	depends	not	only	on	the	output	
of	a	computation	but	also	on	the	time	at	which	the	output	is	produced.
• Real-time	scheduling	algorithms	aim	to	meet	application-specific	timing	
(and	possibly	other	types	of)	constraints	on	tasks.	
• In	this	course:	different	algorithms	and	corresponding	schedulability
tests	for	scheduling	real-time	tasks	on	a	single	processor
• Preemptive	+	aperiodic	tasks:	EDD,	EDF
• Preemptive	+	periodic	tasks:	RM	(fixed	priorities),	EDF	(dynamic	priorities)

• Despite	their	long	history	of	40+	years,	real-time	scheduling	concepts	
are	highly	relevant	today	in	CPS,	IoT,	datacenters,	cloud	computing,	etc.

37

Summary	of	Today’s	Lecture

