
Networked Embedded Systems Group Dr. Marco Zimmerling

Networked Embedded Systems WS 2016/17

Sample Solutions to Exercise 2: Communication

Discussion date: December 16, 2016

Task 1: Wired Communication between On-board Components

Figure 1 shows part of the functional block diagram of the Tmote Sky platform. The CC2420 radio chip
and the Texas Instruments (TI) MSP430 microcontroller (MCU) communicate through an SPI bus and 6
digital input/output (I/O) lines. The radio reads or sets the state of its I/O pins with frequency fr, as
determined by its crystal oscillator. The MCU reads or sets the state of its I/O pins with frequency fm, as
determined by its internal digitally controlled oscillator (DCO). Assume the two clocks do not drift (i.e.,
fr and fm do not change over time), and changes in the state of an I/O pin at one component (i.e., radio
or MCU) result in an instantaneous change in the state of the respective I/O pin at the other component.

Figure 1: Part of the functional block diagram of the Tmote Sky platform.

Consider the following scenario. The radio signals to the MCU the end of a packet reception by changing
the state of a specific I/O pin. As soon as the MCU detects this change, it starts to execute for a fixed
number of clock ticks I (with operating frequency fm). Immediately afterwards the MCU changes the state
of a specific I/O pin in order to start a packet transmission by the radio.

(a) Determine the delay D between the end of a packet reception and the start of the next packet
transmission assuming that the MCU needs to execute for I = 100 clock ticks, and that radio and
MCU operate perfectly synchronized with frequency f = fr = fm = 8MHz.

1



Solution: This setting is equivalent to the case of a system-on-chip (SoC) platform, where radio and
MCU are effectively driven by the same 8 MHz clock source. Thus, as depicted in Figure 2, the delay
D between the end of a packet reception and the start of the next packet transmission is simply the
time the MCU needs to execute for I = 100 clock ticks: D = I/f = 100

8,000,000 s = 12.5µs.

time
radio

time
MCU …

…

𝐼 clock	ticks

𝐷

Figure 2: Radio and MCU run perfectly synchronized.

(b) Now assume that radio and MCU run asynchronously with frequency f = fr = fm = 8MHz.
Determine the delay D for the case that the MCU needs to execute for I = 100 clock ticks.

Solution: The Tmote Sky is not a SoC platform, so as considered in this subtask the radio and the
MCU do not operate in perfect synchrony. Thus, as shown in Figure 3, there is a variable initial delay δ
that represents the time it takes for the MCU to detect the signal from the radio, and there is a variable
delay 1−δ that represents the time it takes for the radio to detect the signal from the MCU. Because
radio and MCU run completely unsynchronized, the initial delay δ is a continuous random variable
uniformly distributed in the interval 0 < δ ≤ 1/f . As a result, compared to the synchronized case, the
delay D increases by the duration of one clock period 1/f : D = (I +1)/f = 101

8,000,000 s = 12.625µs.

time
radio

time
MCU …

…

𝐼 clock	ticks𝛿

1 − 𝛿

𝐷

Figure 3: Radio and MCU run completely unsynchronized by with the same frequency.

(c) Now assume that radio and MCU run asynchronously with frequencies fr = 8MHz and fm = 4MHz.
Determine all possible values of the delay D when the MCU executes for I = 100 clock ticks. Support
your answer by providing an analytical expression for D as a function of fr and fm, among others.

Solution: Let us derive an analytical expression for the delay D. To this end, we represent the variable
initial delay δ as a fraction k of the MCU clock period 1/fm, as shown in Figure 4; that is, k is a
continuous random variable uniformly distributed in the interval 0 < k ≤ 1. With that we can express
the time it takes for the MCU to detect the signal from the radio and to execute for I clock ticks as

(I + k)
1

fm
(1)

Multiplying (1) by the frequency of the radio clock fr, we convert this time into the corresponding
(fractional) number of radio clock ticks

(I + k)
fr
fm

(2)

As visible in Figure 4, the radio detects the signal from the MCU only at the next tick of its clock.
To account for this, we take the ceiling of (2) to obtain the delay D in terms of radio clock ticks⌈

(I + k)
fr
fm

⌉
(3)

2



Multiplying (3) by the duration of a single radio clock tick 1/fr, we get the delay D in seconds

D =
1

fr

⌈
(I + k)

fr
fm

⌉
(4)

For I = 100, fr = 8MHz, and fm = 4MHz, we have D = 1
8,000,000(200 + d2ke). Thus, depending

on the initial delay represented by k there are two possible values for the delay D:

• 0 < k ≤ 0.5⇒ d2ke = 1: D = 201
8,000,000 s = 25.125µs

• 0.5 < k ≤ 1⇒ d2ke = 2: D = 202
8,000,000 s = 25.25µs

time
radio

time
MCU …

…

𝐼 clock	ticksfraction	𝑘 of	a	clock	tick

𝐷

Figure 4: Radio and MCU run completely unsynchronized and with different frequencies.

(d) Assume that radio and MCU run asynchronously with frequencies fr = 8MHz and fm = 222 Hz =
4, 194, 304Hz. How many possible values can the delay D take when the MCU executes for I = 100
clock ticks? Is it possible to reduce the number of possible values for the delay D by letting the MCU
execute for a few more clock ticks (e.g., by inserting NOPs into the code executed by the MCU, where
one NOP takes exactly one clock period 1/fm to execute)? If so, determine the smallest number of
clock ticks greater than 100 for which the number of possible values of the delay D is minimal.

Solution: The delay D can take three possible values for I = 100. To see this, we note that since
(I + k)fr/fm ≈ 190.7 + 1.907 · k, the smallest possible delay measured in radio clock ticks is
d190.7e = 191. We find three ranges for the initial delay represented by k yielding three distinct
values for the delay D:

• 0 < k ≤ 191 · fm/fr − I ≈ 0.139⇒ d(I + k)fr/fme = 191: D = 191
8,000,000 s = 23.875µs

• 0.139 < k ≤ 192 · fm/fr − I ≈ 0.663⇒ d(I + k)fr/fme = 192: D = 192
8,000,000 s = 24µs

• 0.663 < k ≤ 1⇒ d(I + k)fr/fme = 193: D = 193
8,000,000 s = 24.125µs

Yes, there are certain numbers of clock ticks I for which the delay D takes only two instead of three
possible values. The smallest such number of clock ticks greater than 100 is I = 107. In this case,
the smallest possible delay measured in radio clock ticks is d204.08e = 205. We find

• 0 < k ≤ 205 · fm/fr − I ≈ 0.479⇒ d(I + k)fr/fme = 205: D = 205
8,000,000 s = 25.625µs

• 0.479 < k ≤ 1⇒ d(I + k)fr/fme = 206: D = 206
8,000,000 s = 25.75µs

Using (4) we can determine the delay D for a given I and a set of random values for k uniformly
chosen from the interval ]0, 1]. Figure 5 plots the number of possible values for D depending on I.
We can see that for any I ∈ {107, 118, 129, 140, 151, 161, . . .} there are only two possible values of
the delay D. These two values are 1/fr = 0.125µs apart.

Task 2: Wireless Communication between Low-power Devices

Two Tmote Sky devices, one sender and one receiver, exchange packets using their IEEE 802.15.4 compliant
CC2420 radios. Figure 6 shows the frame format of an IEEE 802.15.4 packet as defined by the standard.
The synchronization header (SHR) is automatically generated by the radio hardware. The frame length field

3



100 110 120 130 140 150 160 170
Number of clock ticks

0

1

2

3

4

N
um

be
r 

of
 d

iff
er

en
t d

el
ay

s

Figure 5: Number of possible values of the delay D depending on the number of clock ticks I the MCU
needs to execute, for fr = 8MHz and fm = 222 Hz = 4, 194, 304Hz.

(i.e., the PHY header) specifies the number of bytes in the MAC protocol data unit (MPDU); however, the
most significant bit of the frame length field is reserved and should be set to zero. Many communication
stacks do not use the full MAC layer format. Instead, their MPDU only consists of the MAC payload and
the frame check sequence (FCS); that is, the space typically reserved for the MAC header (MHR) can be
used to accommodate a larger MAC payload. The FCS is automatically generated by the radio hardware.

Figure 6: IEEE 802.15.4 frame format.

(a) Determine the maximum size (in bytes) of the PHY protocol data unit (PPDU). What is the maximum
size of the MAC payload?

Solution: There are only 7 bits available in the frame length field for specifying the size of the MPDU.
Thus, the MPDU can be at most 127 bytes. Subtracting the 2-byte FCS, the maximum size of the
MAC payload is 125 bytes. This corresponds to a maximum PPDU of 4 + 1 + 1 + 125 + 2 = 133
bytes.

(b) The sending device wants to transmit data to the receiving device as fast as possible. The distance
between the two devices is small enough so that they can communicate directly with each other.
What is the maximum throughput the two devices can theoretically achieve? Keep in mind that the
transmit bit rate of a IEEE 802.15.4 radio is R = 250 kbit/s, and that after triggering a transmission
it takes 192µs until the radio actually starts to transmit the SHR.

Solution: To calculate the maximum single-hop throughput Ts, we note that the MAC payload should
be as large as possible, because this minimizes the overhead that comes with each packet (e.g., due
to the SHR and the FCS). The maximum MAC payload is 125 bytes. Between two back-to-back
transmissions there is an inevitable gap of 192µs, which corresponds to an additional overhead of 6
bytes for a transmit bit rate of R = 250 kbit/s. Taking into account any other overhead, we get

Ts =
125

4 + 1 + 1 + 125 + 2 + 6
· 250 kbit/s ≈ 224.8 kbit/s (5)

4



(c) Now assume that the distance between sender and receiver exceeds the IEEE 802.15.4 communication
range, which is typically on the order of a few tens of meters. Thus, the two devices rely on multi-hop
communication, where intermediate devices relay the packets from the sender in a hop-by-hop fashion
to the receiver. Assume that the number of hops in the linear multi-hop topology is smaller than the
number of IEEE 802.15.4 radio channels (16). Using different channels, two devices can transmit at
the same time without interfering with each other. What is the maximum multi-hop throughput the
two devices (i.e., sender and receiver that are several hops apart) can theoretically achieve?

Solution: Using multi-hop communication along a path S, 1, 2, 3, . . . , R that connects sender S with
receiver R, there is the problem that, for example, the transmission between node S and node 1 may
interfere with the concurrent transmission between node 2 and node 3. To eliminate this so-called
intra-path interference, nodes S and 1 and nodes 2 and 3 should use different radio channels. Because
using a half-duplex radio a node cannot send and receive at the same time, the maximum multi-hop
throughput Tm is half the maximum single-hop throughput, Tm = Ts/2 ≈ 112.4 kbit/s.

(d) Assume that sender and receiver are H = 6 hops apart; that is, 5 intermediate devices relay packets
from the sender to the receiver. The wireless channel conditions are difficult: single-hop transmissions
between any two devices succeed only with probability p = 0.5. To still achieve a high end-to-end
reliability, devices can re-transmit each packet up to N times. A device re-transmits a packet if it
does not receive an acknowledgment within a certain interval after a (re-)transmission. How many
per-hop retransmissions N are needed to achieve an average end-to-end reliability higher than 99 %?

Hint: You may assume that packet (re-)transmissions are statistically independent events.

Solution: Let as derive an expression for the end-to-end reliability R along a H-hop path, where
each link along the path has exactly the same probability of success p for a single transmission. We
can write

R = pHhop (6)

where phop denotes the probability of success across any given link after N retransmissions. The
probability that the packet is not successfully received across a link after the initial transmission and
N subsequent re-transmissions is (1− p)N+1. Thus, we have phop = 1− (1− p)N+1 and hence

R = [1− (1− p)N+1]H (7)

For p = 0.5 and H = 6 we need to allow for N ≥ 9 packet re-transmissions at each hop to achieve
an average end-to-end reliability of R > 0.99.

(e) To achieve a lifetime of multiple years, a device should duty-cycle its radio. Assume a device runs a
sender-initiated media access control (MAC) protocol based on low-power listening (LPL). The MAC
protocol is configured to regularly wake-up the radio every Tw for Ton = 10ms to check whether
there is any incoming traffic. When the radio is turned on it draws Ion = 18.8mA, and Ioff = 20µA
when it is turned off. How long must the wake-up interval Tw be to achieve an estimated lifetime of
2 years (i.e., 730 days), assuming the device is powered by batteries that supply 2000 mAh at 3 V.
Think about the implications on the achievable throughput.

Hint: Assume the device never sends or receives anything, it does nothing else than duty-cycling its
radio. Also, neglect any effects related to battery discharge.

Solution: Given the battery capacity, Q, and the current draws when the radio is on, Ion , and off,
Ioff , we can determine the lifetime T of a device that only duty cycles its radio as

T =
Q

DonIon +Doff Ioff
(8)

where Don and Doff are the fractions of time the radio is on and off. The latter two can be expressed
as Don = Ton/Tw and Doff = 1−Don = 1−Ton/Tw. Substituting into (8) and solving for Tw gives

Tw =
Q/T − Ioff

Ton(Ion − Ioff )
(9)

5



For Q = 2000mAh = 7200As, T = 2 · 365 · 24 · 60 · 60 s, and Ton , Ion , and Ioff as given above, we
find that the wake-up interval Tw must be 1.994578 s ≈ 2 s or longer to achieve an estimated lifetime
of 2 years.

The throughput in such a low-duty-cycle network is significantly lower than the theoretical maximum.
Without specific MAC protocol optimizations, a device is only able to receive one packet every two
seconds, and a sender needs to wait on average one second until the intended receiver wakes up. As
a result, only applications with low traffic load can be supported, such as environmental monitoring.

6


	Wired Communication between On-board Components
	Wireless Communication between Low-power Devices

