
Networked Embedded Systems Group Dr. Marco Zimmerling

Networked Embedded Systems WS 2016/17

Sample Solutions to Exercise 1: Real-time Scheduling

Discussion date: December 9, 2016

Task 1: Scheduling Function and Parameters of Real-time Tasks

A real-time system needs to execute four tasks J1, J2, J3, and J4. Their arrival times ai and absolute
deadlines di are listed in Table 1. The scheduling function σ(t) is shown in Figure 1.

Table 1: Task set for Task 1.
J1 J2 J3 J4

arrival time ai 0 6 4 2

absolute deadline di 9 18 22 7

𝜎(𝑡)

0 5 10 15 20 25

1

2

3

4

time

Figure 1: Scheduling function σ(t) for Task 1.

(a) Determine the maximum lateness when tasks are executed according to the given scheduling function.

Solution: The lateness of each individual task is

• L1 = f1 − d1 = 13 − 9 = 4

• L2 = f2 − d2 = 17 − 18 = −1

• L3 = f3 − d3 = 20 − 22 = −2

• L4 = f4 − d4 = 7 − 7 = 0

Thus, the maximum lateness is 4. It is induced by task J2, which is the only task that violates the
specified timing constraints and hence has a lateness greater than zero.

1

(b) Determine the laxity of each task.

Solution: The tasks’ computation times are C1 = 5, C2 = 6, C3 = 4, and C4 = 3. Based on those,
the laxity of each individual task can be computed as follows:

• X1 = d1 − a1 − C1 = 9 − 0 − 5 = 4

• X2 = d2 − a2 − C2 = 18 − 6 − 6 = 6

• X3 = d3 − a3 − C3 = 22 − 4 − 4 = 14

• X4 = d4 − a4 − C4 = 7 − 2 − 3 = 2

(c) Compute the processor utilization U for the interval between time t = 0 and time t = 20.

Solution: U = 18/20 = 0.9

(d) Is this schedule feasible? If not, modify the scheduling function so that the task set is schedulable.

Solution: A schedule is feasible if all tasks can be completed according to a set of specified con-
straints. However, the given scheduling function does not complete all tasks by their deadlines, as
visible in Figure 2.

𝜎(𝑡)

0 5 10 15 20 25

1

2

3

4

time

arrival	time
absolute	deadline

Figure 2: Scheduling function σ(t) from Task 1 with the violation of task J1’s deadline.

Figure 3 shows one of the many possible modified scheduling functions that completes all tasks by
their deadlines.

𝜎(𝑡)

0 5 10 15 20 25

1

2

3

4

time

arrival	time
absolute	deadline

Figure 3: Modified scheduling function σ(t) for Task 1 that meets all deadlines.

2

Task 2: Earliest Deadline Due (EDD)

Check whether the Earliest Deadline Due (EDD) algorithm produces a feasible schedule for the task set in
Table 2. The tasks are independent and arrive synchronously at time t = 0. Determine the schedule.

Table 2: Task set for Task 2.
J1 J2 J3 J4

execution time Ci 6 2 4 3

relative deadline Di 16 7 5 12

Solution: EDD can schedule independent tasks with the same arrival time by following Jackson’s rule:
Given a set of n real-time tasks, any algorithm that executes the tasks in order of non-decreasing deadline
is optimal with respect to minimizing the maximum lateness of the task set. When applied to the given
task set, EDD produces a feasible schedule, as shown in Figure 4. As visible from the figure, EDD schedules
the four tasks in order of non-decreasing deadline as follows: J3, J2, J4, J1.

0 5 10 15 time

𝐽", 𝐽$, 𝐽%, 𝐽& 𝐽% 𝐽$ 𝐽& 𝐽"

𝐽% 𝐽$ 𝐽& 𝐽"

Figure 4: Feasible schedule produced by EDD for the task set from Task 2.

Task 3: Earliest Deadline First (EDF)

Given is a set of five tasks as shown in Table 3.

Table 3: Task set for Task 3.
J1 J2 J3 J4 J5

arrival time ai 0 13 3 0 9

execution time Ci 3 4 2 5 2

absolute deadline di 17 19 6 8 15

(a) Determine the Earliest Deadline First (EDF) schedule. Is the schedule feasible?

Solution: EDF can schedule independent tasks with arbitrary arrival times in a preemptive fashion
by following Horn’s rule: Given a set of n real-time tasks with arbitrary arrival times, any algorithm
that at any point in time executes the task with the earliest absolute deadline among all ready tasks
is optimal with respect to minimizing the maximum lateness. When applied to the given task set,
EDF produces a feasible schedule, as shown in Figure 5.

(b) At time t = 2, a new task Jn arrives with execution time Cn = 3 and absolute deadline dn = 11. Is
the new task set (including Jn) still schedulable or do you need to reject the newly arrived task?

Solution: The new task Jn that arrives at time t = 2 can be accepted, because the resulting task
set that includes Jn remains schedulable; the new schedule is shown in Figure 6. As described in the
lecture, this can be checked by computing at certain time points the worst-case finishing times of
the tasks and comparing them with the absolute deadlines. In the following, we perform this check
in an online fashion; that is, we perform the EDF schedulability test each time a new task arrives,
and consider only those tasks that are present in the system at this point in time. We process those
tasks in order of increasing absolute deadline.

From (a) we know that before task Jn arrives at time t = 2 all active tasks, J1 and J4, are feasible.

3

𝐽"
0 5 10 15 time

𝐽", 𝐽$ 𝐽% 𝐽$ 𝐽&

𝐽$ 𝐽% 𝐽" 𝐽&

𝐽% 𝐽' 𝐽& 𝐽" 𝐽'

𝐽$ 𝐽'

Figure 5: Feasible schedule produced by EDF for the task set from Task 3.

𝐽"
0 5 10 15 time

𝐽", 𝐽$ 𝐽% 𝐽$ 𝐽&

𝐽$ 𝐽% 𝐽' 𝐽&

𝐽% 𝐽(𝐽& 𝐽" 𝐽(

𝐽$ 𝐽(

𝐽' 𝐽'

Figure 6: Feasible schedule produced by EDF after adding the new task Jn to the task set from Task 3.

At time t = 2, we have three tasks in the system: J1, J4, and the new task Jn . For these three tasks
we perform the EDF schedulability test in order of increasing absolute deadline: Set f0 = t = 2.

• Task J4: f1 = f0 + c4(2) = 2 + 3 = 5 ≤ 8 = d4 (OK)

• Task Jn : f2 = f1 + cn(2) = 5 + 3 = 8 ≤ 11 = dn (OK)

• Task J1: f3 = f2 + c1(2) = 8 + 3 = 11 ≤ 17 = d1 (OK)

Thus, at time t = 2, all tasks in the system are feasible.

At time t = 3, the next task, J3, arrives. We now have four active tasks in the system: J1, J3, J4,
and Jn . The schedulability test proceeds as follows: Set f0 = t = 3.

• Task J3: f1 = f0 + c3(3) = 3 + 2 = 5 ≤ 6 = d3 (OK)

• Task J4: f2 = f1 + c4(3) = 5 + 2 = 7 ≤ 8 = d4 (OK)

• Task Jn : f3 = f2 + cn(3) = 7 + 3 = 10 ≤ 11 = dn (OK)

• Task J1: f4 = f3 + c1(3) = 10 + 3 = 13 ≤ 17 = d1 (OK)

Thus, at time t = 2, all tasks in the system are feasible.

The next task to arrive is J5. It arrives as t = 8. At this time, we have three active tasks in the
system: J1, J5, and Jn . The schedulability test proceeds as follows: Set f0 = t = 8.

• Task Jn : f1 = f0 + cn(8) = 8 + 2 = 10 ≤ 11 = dn (OK)

• Task J5: f2 = f1 + c5(8) = 10 + 2 = 12 ≤ 15 = d5 (OK)

• Task J1: f3 = f2 + c1(8) = 12 + 3 = 15 ≤ 17 = d1 (OK)

Thus, at time t = 8, all tasks in the system are feasible.

Finally, task J2 arrives at t = 13. At this time, we have two active tasks in the system: J1 and J2.
The schedulability test proceeds as follows: Set f0 = t = 13.

• Task J1: f1 = f0 + c1(13) = 13 + 2 = 15 ≤ 17 = d1 (OK)

• Task J2: f2 = f1 + c2(13) = 15 + 4 = 19 ≤ 19 = d2 (OK)

Thus, we can conclude that the whole schedule, as shown in Figure 6, is feasible.

4

Task 4: Fixed-priority Scheduling: Rate Monotonic (RM)

Consider the set of periodic tasks given in Table 4; assume that the first instance of each task arrives at
time t = 0 (i.e., the phases Φi are 0) and that relative deadlines are equal to periods (i.e., Di = Ti).

Table 4: Task set for Task 4.
τ1 τ2 τ3

execution time Ci 1 2 3

period Ti 4 6 8

(a) Use the sufficient test to check if the task set is schedulable under Rate-monotonic (RM) scheduling.

RM assigns static priorities to tasks before execution, so that tasks with smaller periods have higher
priorities. RM scheduling is preemptive (i.e., higher-priority tasks preempt lower-priority tasks) and
optimal; that is, if a tast set cannot be scheduling using RM, it cannot be scheduling by any other
fixed-priority scheduling algorithm.

For a set of n periodic tasks, the sufficient schedulability test based on the processor utilization U is

U =
n∑

i=1

Ci

Ti
≤ n(21/n − 1)

For the task set given in Table 4, we have U = 1/4 + 2/6 + 3/8 ≈ 0.958 � 3(21/3 − 1) ≈ 0.779.
Thus, the sufficient schedulability test failed.

(b) Construct the schedule using RM for the interval [0, 20]. Identify deadline misses if they exist.

The schedule produced by RM in the interval [0, 20] is shown in Figure 7. In this interval, there is one
deadline miss: the first instance of task τ3 completes only at time t = 10, but the absolute deadline
of that instance is at time t = 8.

𝜏"𝜏#𝜏$𝜏#𝜏#𝜏"𝜏$𝜏#𝜏"
0 5 10 15 20 time

𝜏$, 𝜏", 𝜏# 𝜏$ 𝜏" 𝜏$, 𝜏# 𝜏$, 𝜏" 𝜏$, 𝜏# 𝜏" 𝜏$

𝜏$ 𝜏# 𝜏$ 𝜏# 𝜏$ 𝜏"

Figure 7: Schedule produced by RM for the task set from Task 4, including a deadline miss.

Task 5: Dynamic-priority Scheduling: Earliest Deadline First (EDF)

(a) Check if the task set from Task 4 in Table 4 is schedulable under EDF scheduling.

EDF assigns dynamic priorities to tasks during execution, so that tasks with earlier deadline have
higher priority. EDF is preemptive and optimal; that is, no other algorithm can schedule a set of
periodic real-time tasks if it cannot be scheduled by EDF.

For a set of n periodic tasks, the necesary and sufficient schedulability test is

U =
n∑

i=1

Ci

Ti
≤ 1

For the task set given in Table 4, we have U = 1/4 + 2/6 + 3/8 ≈ 0.958 ≤ 1. Thus, the EDF
schedule meets all deadlines.

5

(b) Construct the schedule using EDF for the interval [0, 20]. Identify deadline misses if they exist.

The schedule produced by EDF in the interval [0, 20] is shown in Figure 8. Different from the schedule
produced by RM shown in Figure 7, EDF meets all deadlines. Note that, for example, at time t = 4
when the second instance of task τ1 arrives, the running task τ3 is not preempted, because both have
the same absolute deadline (d1,2 = d3,1 = 8) and hence the same priority.

𝜏"𝜏#𝜏$𝜏#𝜏$𝜏" 𝜏"𝜏$𝜏#𝜏#
0 5 10 15 20 time

𝜏$, 𝜏#, 𝜏" 𝜏$ 𝜏# 𝜏$, 𝜏" 𝜏$, 𝜏# 𝜏$, 𝜏" 𝜏# 𝜏$

𝜏$ 𝜏$

Figure 8: Feasible schedule produced by EDF for the task set from Task 4.

(c) Assume the necessary and sufficient EDF schedulability test fails for a task set with given execution
times Ci and periods Ti = Di, so there are definitely deadline misses expected when scheduling this
task set using EDF. Does this imply that always the same task(s) will miss their deadline?

Schedulability test based on execution times and periods does not say which tasks are going to miss
their deadline. Depending on their arrival times (i.e., phases), different tasks may miss deadlines.

6

	Scheduling Function and Parameters of Real-time Tasks
	Earliest Deadline Due (EDD)
	Earliest Deadline First (EDF)
	Fixed-priority Scheduling: Rate Monotonic (RM)
	Dynamic-priority Scheduling: Earliest Deadline First (EDF)

