
BLEach: Exploiting the Full Potential of IPv6 over BLE
in Constrained Embedded IoT Devices

Michael Spörk
Graz University of Technology
michael.spoerk@tugraz.at

Carlo Alberto Boano
Graz University of Technology

cboano@tugraz.at

Marco Zimmerling
Dresden University of Technology
marco.zimmerling@tu-dresden.de

Kay Römer
Graz University of Technology

roemer@tugraz.at

ABSTRACT
The ability to fine-tune communication performance is key to meet-
ing the requirements of Internet of Things applications. While years
of low-power wireless research now allows developers to fully opti-
mize the performance of applications built on top of IEEE 802.15.4,
this has not yet happened with Bluetooth Low Energy (BLE), whose
networking performance is still largely unexplored and whose po-
tential is not yet fully exploited. Indeed, BLE radios are often treated
as a black box, because they are meant to only execute data transfer
commands and manufacturers build BLE soft devices with closed-
source network stacks. As a result, developers working with BLE
cannot modify the radio driver or the link-layer, and hence have no
direct control over radio duty cycling and packet re-transmissions.

To tackle these challenges, we analyze and model how specific
BLE features can be used to fine-tune communication performance
at run-time. We further present the design and implementation of
BLEach, an IPv6-over-BLE stack that exposes tuning knobs for con-
trolling the energy usage and timeliness of BLE transmissions and
that allows to enforce a variety of quality-of-service (QoS) metrics.
We design three exemplary modules for BLEach providing novel
BLE functionality: adaptive radio duty cycling, IPv6-over-BLE traf-
fic prioritization and multiplexing, as well as indirect link-quality
monitoring. We integrate BLEach into Contiki and release its code,
thus addressing the lack of a full-fledged open-source IPv6-over-
BLE stack. Experiments demonstrate that BLEach is lightweight,
interoperable with other standard-compliant devices, and reduces
energy costs by up to 50 % while giving QoS guarantees by quickly
adapting to changes in interference, traffic priority, and traffic load.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-
tolerant systems and networks; • Networks→ Network protocols;

KEYWORDS
Bluetooth Low Energy, Contiki, Internet of Things, IPv6 over BLE.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’17, November 6–8, 2017, Delft, Netherlands
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5459-2/17/11. . . $15.00
https://doi.org/10.1145/3131672.3131687

ACM Reference Format:
Michael Spörk, Carlo Alberto Boano, Marco Zimmerling, and Kay Römer.
2017. BLEach: Exploiting the Full Potential of IPv6 over BLE in Constrained
Embedded IoT Devices. In Proceedings of SenSys ’17 . ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3131672.3131687

1 INTRODUCTION
Bluetooth Low Energy (BLE) is a low-power wireless technology
that has gained popularity in recent years due to its wide adoption
in consumer devices, such as smartphones, wearables, and laptops.
These devices can act as gateways, seamlessly integrating “smart
objects” into the Internet of Things (IoT). This way, BLE supports
a range of powerful applications, from home entertainment and
automation to health-care monitoring and fitness tracking.
Challenges. Approved in October 2015, RFC 7668 describes how
IPv6 packets can be exchanged using BLE connections (IPv6 over
BLE) [24], allowing any “smart object” supporting BLE to commu-
nicate with any other IPv6-enabled device using headless routers.
This has paved the way for an even richer set of applications using
BLE technology. It also represents a significant leap in IoT research,
where for almost a decade IPv6 support for low-power wireless
networks was limited to IPv6 over IEEE 802.15.4 (6LoWPAN).

Unfortunately, even two years later, little is known about how
to optimize BLE’s performance and how to unveil its full potential,
especially in combination with IPv6. Most BLE works found in the
literature are based on the connection-less mode, which does not
support IPv6. Moreover, BLE radios are often treated as a black box
for two reasons. First, they are typically built as drop-in communi-
cation peripherals attached to a host processor that simply executes
data transfer commands [37]. Second, manufacturers often build
BLE soft devices with closed-source network stacks provided as
libraries in binary format [35]. As a result, developers cannot mod-
ify the BLE radio driver and link-layer implementations, and hence
have no explicit control over link-layer (re-)transmissions and radio
duty cycling, which largely determine application performance.

This state of affairs represents a significant problem, as the lower
layers in the protocol stack must be tuned at runtime to meet the
different requirements of IoT applications operating in dynamic
environments [4, 14, 36, 38]. For instance, some applications may
need to minimize energy consumption for economic viability, while
still ensuring timely delivery of alarm messages in response to, for
example, deteriorating vital signs of a patient [4]. The problem is
further exacerbated by the lack of open-source stacks supporting
IPv6 and BLE connection-based communication [41].

https://doi.org/10.1145/3131672.3131687
https://doi.org/10.1145/3131672.3131687

SenSys ’17, November 6–8, 2017, Delft, Netherlands M. Spörk, C.A. Boano, M. Zimmerling, and K. Römer

Thus, there is a need to gain a deeper understanding of how
BLE features can be used to fine-tune communication performance.
Designing an IPv6-over-BLE stack that exposes tuning knobs to con-
trol the energy expenditure and timeliness of BLE communications
and that provides different quality-of-service (QoS) levels would
greatly improve the performance of IoT applications using BLE.
Contributions. In this paper, we analyze BLE connection-based
transmissions and model their energy consumption and latency as
functions of key BLE parameters. We further present BLEach, the
first full-fledged IPv6-over-BLE stack that exposes these parameters
as tuning knobs to optimize the performance of single-hop BLE.

BLEach retains the intended simplicity of the BLE standard in-
cluding its focus on single-hop networking, while supporting IPv6
functionality with minimal processing and memory overhead. Fully
interoperable with other IPv6-compliant devices, BLEach is agnos-
tic to the hardware platform and the application; that is, it supports
single- and dual-core platforms through minimal changes to the
lower layers, while completely hiding the platform specifics from
the application. BLEach’s modular design enables alternative imple-
mentations of BLE features or adding completely new functionality
to improve performance. To show its capabilities, we enrich BLEach
with three exemplary modules: the first one implementing a duty-
cycling strategy that dynamically adapts BLE parameters to traffic
load, the second one performing IPv6-over-BLE traffic prioritization
and multiplexing, and the third one indirectly monitoring the link
quality at run-time for black- and whitelisting of radio channels.

We integrate BLEach into Contiki and release its source code
(http://www.iti.tugraz.at/BLEach), which makes it the first open-
source IPv6-over-BLE stack supporting both resource-constrained
master and slave devices. We thus fill an important gap identified
by the research community [41], as further discussed in Sec. 7.

Experiments with BLEach on the popular TI CC2650 platform
reveal that (i) BLEach is interoperable with RFC-compliant bor-
der routers, (ii) its minimal processing overhead and low memory
footprint make it suitable for constrained embedded IoT devices,
and (iii) the three exemplary modules we have developed signifi-
cantly increase BLE’s resilience and efficiency. Moreover, we com-
pare the performance of BLEach and Contiki’s default IPv6-over-
IEEE 802.15.4 stack when running the same exemplary application
on top, showing that BLEach is more energy efficient. We also com-
pare the communication range achieved by BLE and IEEE 802.15.4
on the same platform outdoors, and are the first experimental study
highlighting that BLE achieves a significantly lower range than
IEEE 802.15.4 regardless of the employed transmission power.

In summary, this paper makes the following contributions:
• We analyze BLE’s connection-based communication and
model how specific BLE features and parameters can be used
to fine-tune communication performance.

• We present BLEach, the first full-fledged IPv6-over-BLE stack
that exposes these parameters to control the energy expen-
diture and timeliness of BLE communications.

• We show how BLEach empowers IoT research by enriching
its architecture with novel features: a duty-cycling strategy
that adapts BLE parameters to traffic load, QoS-aware BLE
traffic prioritization and multiplexing, and adaptive channel
blacklisting using indirect link-quality monitoring.

BLE PHY Layer

BLE Link Layer

BLE L2CAP

ATT 6LoWPAN for BLE

GATT IPv6

IPSS TCP / UDP / …

Application

"Black Box"
BLE Controller

BLE Host

Host Controller
Interface

(HCI)

Figure 1: BLE architecture as specified by RFC 7668 [24].

• We compare BLEach to Contiki’s default IPv6-over-
IEEE 802.15.4 stack on the same platform and show that
BLEach is more energy efficient, although BLE achieves a
lower communication range than IEEE 802.15.4.

2 CHALLENGES OF IPV6 OVER BLE
RFC 7668 [24] specifies how BLE devices can communicate with any
other IPv6-enabled device using headless routers. To exchange IPv6
packets, BLE devices form star networks with a central node, called
master, acting as gateway to the Internet [24]. After establishing
a connection with the master, BLE devices perform IPv6 neighbor
discovery according to RFC 6775 [45], carry out IPv6 address auto-
configuration according to RFC 7136 [3], and exchange compressed
IPv6 packets with the IPv6 prefix advertised by the master. Both the
above standards and current BLE platforms pose several challenges
that must be addressed in the design of an IPv6-over-BLE stack.
Support for connection-based mode. BLE supports two modes
of communication: connection-less and connection-based. Most BLE-
based IoT applications today use the connection-less mode [18, 25]:
devices are either advertisers sending unidirectional broadcast mes-
sages, or scanners reading and processing the messages sent by ad-
vertisers. Connection-less communication is simple and supported
by most existing IoT systems. IPv6 over BLE, instead, requires de-
vices to communicate bidirectionally using the connection-based
mode: devices first establish a connection to a master using the
advertisement channels, and then exchange data during periodic
connection events. However, BLE’s connection-based mode is un-
derexplored and not well supported by existing IoT systems.
Nature of BLE controllers. The BLE architecture consists of two
main components, controller and host, which exchange commands
via the Host Controller Interface (HCI) [24], as shown in Fig. 1. To
simplify application development, the controller implementing the
lowest layers of the stack acts as a black box to the upper layers: it
autonomously handles link-layer (re-)transmissions and acknowl-
edgments, and manages connection events according to a set of
parameters passed through the HCI interface. Most BLE controllers
are also closed source and not programmable, so developers can-
not modify their operation or implement functionality that goes
beyond the BLE standard. For example, the nRF52 only provides a
proprietary HCI library to support the BLE controller running on
the main processor, without the possibility to access its internals.
Other platforms, like the TI CC2650 with its separate BLE core, pro-
vide a vendor-specific radio API that developers use to implement
correct communication management. Although implementing such
open BLE controllers is more complex, it also allows to accurately
fine-tune and extend the functionality of the BLE radio.

http://www.iti.tugraz.at/BLEach

BLEach: Exploiting the Full Potential of IPv6 over BLE SenSys ’17, November 6–8, 2017, Delft, Netherlands

tS

Slave

Master

conn_int

advertising

tM
tIFS

tIFS

Connection setup
(Advert. channels 37,38,39)

scanning

Connection event 0 (C0)
Data channel k0

Connection event 1 (C1)
Data channel k1

tc

Connection event 2 (C2)
Data channel k2

…

Connection event 3 (C3)
Data channel k3

tctc

tKtF_slave tF_slave

Figure 2: Example of a BLE connection-based data exchange between a slave and a master using a slave latency of 1.

Temporal decoupling fromupper layers.Using the connection-
less mode, a higher-layer protocol or the application can turn on the
radio and transmit packets at any time. Using the connection-based
mode, however, it is only possible to fill the radio buffer and wait for
the BLE controller to transmit the packet(s) during the next connec-
tion event. Hence, in connection-based mode, packet transmissions
are temporally decoupled from the upper layers. Moreover, there is
no immediate feedback on ongoing transmissions.
Parametrization of connections. The only interface that devel-
opers have to control connection-based communication is a limited
set of connection parameters passed through the HCI interface to
the BLE controller. The set of connection parameters is traditionally
chosen by the master, which informs its slaves about the parame-
ters to be used for communication. How to select these connection
parameters to meet certain performance goals is an open problem.
Runtime adaptation.Most BLE devices are slaves, communicat-
ing with a more powerful master acting as a gateway to the Internet,
such as an embedded PC or smartphone. Such gateways use de-
fault parameters optimized for peak traffic load; constrained slaves
using these parameters quickly drain their batteries. To avoid this
problem, the BLE standard foresees the possibility to negotiate con-
nection parameters: slave devices can ask the master to select other
parameters that better fit their constraints and requirements. If
the master provides this feature, slaves should not only compute
optimized parameters and communicate them to the master, but
also adapt the parameters at runtime in response to changes in traf-
fic load. Although similar ideas have been explored in the context
of IEEE 802.15.4 [30, 46], it is unclear which parameters are most
relevant for BLE performance and how to determine optimized
values for a set of parameters.
QoS support. IPv6-enabled BLE devices can exchange data with
any other IPv6-enabled device, and hence likely experience different
kinds of traffic (e.g., periodic traffic due to sensing and sporadic
ICMP traffic from the border router or other peer devices on the
Internet). It is thus important to give these devices the ability to, for
example, prioritize traffic and support different QoS levels via traffic
prioritization and multiplexing. Such features are often required in
practice but not prescribed by the standard. Conversely, IPv6 over
BLE prescribes the use of LE Credit-Based Flow Control, whereby a
device grants credits to its peer to prevent buffer overflows during
a connection [6]. A practical IPv6-over-BLE stack must adhere to
the standard while allowing for additional features to be added.

3 UNDERSTANDING CONNECTION-BASED
BLE COMMUNICATION

To address the first five challenges mentioned above, we analyze
BLE’s connection-based mode in detail. We describe the sequence
of operations during connection-based communication, discuss the
impact of the most important parameters on BLE’s performance,
and derive analytical expressions that formalize these relationships.

3.1 Anatomy of Connection Events
BLE’s connection-based mode provides bidirectional data transfer
between a slave and a master. As shown in Fig. 2, after a setup phase,
communication occurs in non-overlapping slots called connection
events. The time between the start of two consecutive connection
events, the connection interval conn_int , is fixed. At the beginning
of a connection event, a data channel is selected according to the
adaptive frequency hopping (AFH) algorithm.1 Then master and
slave alternately exchange link-layer packets, which are separated
by the mandatory Inter Frame Spacing (IFS) of length tI F S .

The duration of a connection event tc depends on the number
and the size of the exchanged link-layer packets. Master and slave
may transmit several packets or simply keep the connection alive
by exchanging only one link-layer packet each that indicates that
no more transmissions take place in the current connection event.
When the data exchange is completed, both devices turn off their
radios until the next connection event starts. Master and slave
can send at most F bytes each during a connection event. If they
reach this connection capacity, they turn off the radio and resume
communication at the beginning of the next connection event.

Fig. 2 shows an example where a slave transmits six packets to
the master. Four of them let the slave reach its connection capacity
F in connection eventC0, so the remaining two are sent during con-
nection event C1. In every connection event, the master transmits
the first packet. In the example of Fig. 2, the master sends packets
with an empty payload as it has no data to transmit, while the slave
sends packets with maximum payload. As a result, the length of a
transmission by the master tM is shorter than that of the slave tS .

In connection event C2 the slave has no more data to send, yet a
connection event should contain at least one packet exchange. In
our example, the master transmits in C2 but the slave keeps silent.
This situation is foreseen by the BLE standard: a slave may skip SL
consecutive connection events, where SL is called slave latency. In

1BLE uses 40 channels in the unlicensed 2.4 GHz band. Three advertisement channels
are reserved for unidirectional broadcast (connection-less mode); the remaining 37
data channels are only used for bidirectional unicast (connection-based mode).

SenSys ’17, November 6–8, 2017, Delft, Netherlands M. Spörk, C.A. Boano, M. Zimmerling, and K. Römer

our example, we have SL = 1, so the slave may decide to interact
with the master only on every second connection event. During
connection event C3 both nodes again exchange one packet with
an empty payload and turn off their radios after tK seconds.

BLE’s connection-based mode automatically handles packet ac-
knowledgments (ACKs) and link-layer flow control using a 1-bit
sequence number and 1-bit ACK field in the frame header. In case of
unreliable links, the supervision timeout ST is used to detect the loss
of BLE links, specifying the maximum time between two received
packets before the connection is marked as lost. If ST fires, the
connection is canceled, and slave and master return to advertising
and scanning mode, respectively. To ensure reliable communica-
tion, BLE uses the AFH algorithm, which selects only one of the
enabled data channels in the channel map Cmap provided as input.
By changing Cmap , a master can adaptively blacklist or whitelist
data channels (e.g., to evade interference from co-located networks).

3.2 Relevant Connection Parameters
Table 1 lists themost important BLE connection parameters. BLEach
exposes all of them as tuning knobs (see Sec. 4), yet three deeply
impact BLE’s energy consumption and communication latency:

• A short connection interval conn_int increases throughput
and shortens latency at the cost of higher energy consump-
tion. A long conn_int has the opposite effect.

• A high slave latency SL reduces energy consumption, but
also reduces throughput and increases latency of master-to-
slave data exchange as the slave is free to choose during
which connection event to interact with the master.

• The higher the connection capacity F , the lower the energy
consumption when transmitting large data packets as less
time is spent for pre- and post-processing (tpre and tpost).

Next, we formalize these observations by deriving an analytical
model that expresses BLE’s energy consumption and communica-
tion latency as functions of the three parameters. This model can be
used to find parameter values that meet given performance goals.

3.3 Modeling the Impact of BLE Connection
Parameters on Network Performance

Starting from an entire data transfer, we move on to individual con-
nection events, and finally look at single link-layer transmissions.
Data transfer. We are interested in the time and energy needed
to send D bytes from slave to master. We focus on the slave as
the master is frequently recharged or wall-powered. We neglect
packet loss, which keeps our expressions simple without sacrificing
accuracy, as long as AFH finds a high-quality channel (see Sec. 6).
Extending our models to account for packet loss is beyond the scope
of this paper, but existing approaches can be used [46].

We start with latency. As datamay arrive at any timewith respect
to scheduled connection events, the entire data transfer takes

tavg = (nF − 1/2) · conn_int + tc (1)

on average, where nF is the number of connection events, each
with connection capacity F , needed to send D bytes and given by

nF = ⌈D/F ⌉ (2)

Table 1: BLE parameters exposed in BLEach as tuning knobs.
Parameter name Possible values
Connection interval conn_int [7.5–4000]ms in 1.25ms steps
Slave latency SL [0–500] connection intervals
Connection capacity F hardware-specific no. of bytes
Channel map Cmap bitmask with 37 entries

and tc is the time needed to exchange the remaining data during
the last connection event of the data transfer. In the worst case, the
data arrives just after the start of a connection event, which leads
to the following upper bound on the time needed to send D bytes

tmax = nF · conn_int + tF (3)

Here we assume that the slave transmits the maximum number of
bytes F also in the last connection event, which takes tF seconds.

We now turn to the energy consumed over a time interval tD
while sending D bytes of data; tD may be the sampling interval in
an IoT application. As tD can be longer than the time needed for
the data transfer, we not only need to account for energy ED spent
on exchanging data, but also for energy EM spent on keep-alive
messages, for energy EC spent during skipped connection events
if the slave latency SL > 0, and for energy EI spent in idle mode.
Thus, the total energy consumed is the sum of these components

E = ED + EM + EC + EI (4)

The energy spent on exchanging actual data can be expressed as

ED =

{
D
F · EF , if Dmod F = 0⌊D
F
⌋
· EF + (Dmod F) · EF−EKF + EK , otherwise

(5)
where EF is the energy for exchanging the maximum of F bytes
during a connection event and EK is the energy for exchanging a
packet with zero payload, such as a keep-alive message. The energy
for exchanging keep-alive messages is given by

EM = nK · EK =

⌊(⌊
tD

conn_int

⌋
− nF

)
1

1 + SL

⌋
· EK (6)

where nK is the number of connection events in which a keep-alive
message is exchanged, which can only happen when no actual data
transfer takes place. If SL > 0, a slave may also skip connection
events; however, it still wakes up to check if there are data to be
transmitted. Knowing that one such check consumes ES , we can
express the energy for nS skipped connection events as

EC = nS · ES =

(⌊
tD

conn_int

⌋
− nF − nK

)
· ES (7)

During the remaining time, a slave is in idle mode consuming

EI = [tD − (nF · tF + nK · tK)] · PI (8)

of energy, where tF is the duration of a connection event wherein
the slave sends the maximum of F bytes, tK is the duration of a
connection event wherein the slave sends a keep-alive message,
and PI is the power draw when the slave resides in idle mode.
Connection events. Fig. 3 shows power draw and packet trans-
missions of a slave during a BLE connection event, recorded using
a mixed-signal oscilloscope on the TI CC2650. The slave sends
multiple link-layer packets to the master for a total of 256 bytes.

BLEach: Exploiting the Full Potential of IPv6 over BLE SenSys ’17, November 6–8, 2017, Delft, Netherlands

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
0.0

10.0

20.0

30.0

40.0

Po
we

r [
m

W
] tpre tpost

tIFS

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
Time [ms]

0

1

Sl
av

e

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
0

1

M
as

te
r

Figure 3: Power draw, packet transmissions, and gaps between packets during a BLE connection event, recorded using amixed-
signal oscilloscope on a TI CC2650 platform that acts as the slave and communicates with amaster in connection-basedmode.

Table 2: Power, time, and energymeasured on theTICC2650.

Ppre 16.024 ± 0.28mW tpre 1.780 ± 0.001ms

PM 28.090 ± 0.27mW tM 0.080 ± 0.000ms

PS 30.484 ± 0.44mW tS 0.296 ± 0.000ms

PI F S 23.091 ± 0.30mW tI F S 0.150 ± 0.000ms

Ppost 20.245 ± 0.48mW tpost 0.363 ± 0.001ms

PI 0.939 ± 0.02mW ES 4.751 ± 0.126 µJ

After a pre-processing phase, whose duration tpre is hardware
specific, the master sends its first packetM1. The slave replies with
its first packet S1 after the mandatory IFS of fixed duration tIFS . The
packet exchange continues until master and slave have nomore data
to send or they have reached their connection capacity F . A post-
processing phase with hardware-specific duration tpost completes
the connection event. Thus, the time spent by master and slave in
a generic connection event with n packet exchanges is given by

tc = tpre + tpost + (2n − 1) · tIFS +
n∑
i=1

(
tMi + tSi

)
(9)

where tMi and tSi represent the times needed by master and slave
to transmit their packetsM1, . . . ,Mn and S1, . . . , Sn , respectively.
Using (9), we can obtain tF by letting the number and size of these
packets correspond to the connection capacity F , and tK by letting
M1 and S1 be (keep-alive) packets with zero payload.

Similarly, we obtain the energy consumed by a slave in a generic
connection event by multiplying each individual time in (9) with
the respective power draw as follows

Ec = Epre + Epost + (2n − 1) · EIFS +
n∑
i=1

(
EMi + ESi

)
(10)

Table 2 lists the individual times, power draws, and energy con-
sumption to instantiate (9) and (10) for the TI CC2650. Using (10),
we can also obtain EF and EK as described above for tF and tK .
To calibrate our model for a different platform, we only need to
measure the parameters listed in Table 2.
Link-layer transmissions. BLE’s physical- and link-layer spec-
ification prescribes a common structure for all packets [5]. Each
packet consists of a header and a payload. The header has a 1-byte
preamble, a 4-byte access address, a 2-byte link-layer header, and
a 3-byte CRC, which amounts to a link-layer header overhead of

OLL = 10 bytes. The payload size of a link-layer packet PLL ranges
between 0 and 27 bytes (or higher depending on the BLE version2).
The transmit bitrate in BLE is RLL = 1Mbit/s = 125 kB/s3. Thus,
the time needed to transmit a link-layer packet is

tLL = (OLL + PLL)/RLL (11)

The energy needed to transmit a link-layer packet is simply
ELL = PS · tLL (12)

where PS is the power draw in transmit mode and, for example,
given in Table 2 for the TI CC2650 at 0 dBm transmit power.

4 BLEACH: DESIGN AND IMPLEMENTATION
We present BLEach, a modular open-source IPv6-over-BLE stack
that exposes key features and parameters allowing to control the
energy consumption and timeliness of communication in single-hop
BLE networks in accordance with RFC 7668 [24]. BLEach’s design
is compatible with the architecture of Contiki [17], a widely used
operating system for embedded IoT devices with IPv6 connectivity.

Next, we describe BLEach’s modular design and highlight the
main differences to Contiki’s IPv6-over-IEEE 802.15.4 stack, discuss
howwe integrate BLEach into the Contiki architecture, and describe
an implementation of BLEach for the popular TI CC2650 platform.

4.1 Design
Fig. 4 shows the architecture of BLEach. Since RFC 7668 does not
foresee any changes to the network (i.e., IPv6) and transport layers,
only the lowest four layers are specifically designed to support BLE.

A key challenge in designing BLEach is the nature of BLE con-
trollers. As described in Sec. 2, they temporally decouple radio
processing from higher-layer protocols and applications by auto-
matically handling packet (re-)transmissions and radio duty cycling.
This leads to a number of fundamental differences compared with
existing network stack architectures for IoT devices.
BLE link and PHY layer. The lowest layer in the BLEach stack
is the BLE link and PHY layer, which implements all the services
provided by a BLE controller and exposes to the upper layers an in-
terface to create BLE connections, to append packets to the queue of
outgoing packets, and to get notified about any incoming packets. It
2Up to 27 and 251 bytes of payload are supported by BLE v4.1 and v4.2, respectively.
3BLE v5.0, introduced in December 2016, offers an additional PHY mode that supports
higher transmit bitrate, longer range, higher output power, and periodic advertising.

SenSys ’17, November 6–8, 2017, Delft, Netherlands M. Spörk, C.A. Boano, M. Zimmerling, and K. Römer

Adaptation layer
IPv6 header compression,

fragmentation of IPv6 packets

(sicslowpan)

IPv6 Compression layer
IPv6 header compression

(6lowble)

MAC layer
Collision avoidance, back-off strategy,

retransmission of packets

(nullmac, csma)

RDC layer
Explicit radio duty cycling and

wake-up of the transceiver

(nullrdc, contikimac, xmac)

Radio layer
Direct access to transceiver and

feedback on issued commands

(cc2420, cc1020, cc2650)

L2CAP layer
Flow control, QoS support,

fragmentation of IPv6 packets

(ble-l2cap, ble-l2cap-qos)

Parametrization layer
Indirect duty cycling, connection mode

selection and parametrization

(ble-null-par, ble-adapt-par)

BLE link and PHY layer
Decoupled access to the transceiver,

retransmission of packets, duty cycling

(ble-cc2650, ble-cc2650-ext)

BLEach
IPv6 over BLE

Contiki’s
IPv6 over IEEE 802.15.4

Network
IPv6 support, neighbor discovery, address autoconfiguration

(uip)

Transport
(udp-socket, tcp-socket)

Application
(websocket, http-socket, coap)

Figure 4: Architecture of BLEach and corresponding layers
in Contiki’s IPv6-over-IEEE 802.15.4 stack.

is the only hardware-specific layer within BLEach, and hence needs
to accommodate both closed-source and open BLE controllers.

Both types of controllers implement services such as schedul-
ing link-layer transmissions, managing data buffers, and notifying
the upper layers upon packet reception. While closed-source con-
trollers hide the implementation of these services and provide the
standardized HCI to issue corresponding BLE commands, open con-
trollers require the developer to implement the services, including
the (re-)transmission of link-layer packets and the AFH algorithm,
using the vendor-specific radio API. Thus, the implementation of
the BLE link and PHY layer is more complex for open BLE con-
trollers, but it also allows to accurately fine-tune and modify the
functionality of the BLE radio. As an example, we describe in Sec. 5.3
the implementation of an indirect link-quality monitoring approach
for the TI CC2650 BLE controller that blacklists interfered channels
and increases the system’s timeliness and energy efficiency.
Parametrization layer. On top of the BLE link and PHY layer sits
the parametrization layer. It selects and adapts the connection mode
used for communication and the parameters to be used by the BLE
controller to schedule transmissions at run-time. In particular, by
changing the connection parameters, this layer is also able to indi-
rectly duty cycle the radio, which is a major difference to existing
radio-duty-cycling techniques used in IEEE 802.15.4 stacks [16, 34].

The selection of connection parameters strongly affects system
performance. The parametrization layer allows developers to use
these parameters to influence the timeliness and energy efficiency
of BLE. For example, rather than using the default parameters set
by the master, a slave can compute an optimized parameter set ac-
cording to device constraints and application needs using the model
presented in Sec. 3.3 and negotiate it with the master. We present in
Sec. 5.1 an implementation of an adaptive parametrization layer that
dynamically changes the connection interval at run-time, showing
that it can decrease the energy cost of a device by a factor of two.

Furthermore, this layer could be used to implement aggressive
duty-cycling strategies that temporarily terminate a BLE connection
and resume it at a negotiated point in time so as to significantly
improve the performance of mostly-off sensing devices [9, 11]. The
parametrization layer can also act as a building block to create IPv6-
over-BLE mesh networks using connection-less BLE by scheduling
the transmission of advertisements embedding IPv6 traffic and
scanning for advertisements embedding a response.
L2CAP layer. According to RFC 7668 [24], the L2CAP layer has
two main functions: fragmentation of IPv6 packets and prevention
of buffer overflows by means of LE credit-based flow control. The
fragmentation and reassembly mechanism of L2CAP makes it pos-
sible to exchange large IPv6 packets over constrained BLE links
by fragmenting them into smaller chunks called L2CAP fragments
whose size is upper-bounded by the connection capacity F .

L2CAP also creates logical channels between two peer devices
and makes use of credits to control the flow of fragments and avoid
buffer overflows. Specifically, both devices grant their peer a given
amount of credits for communication. Each time a fragment is sent,
the sender decreases its credit count by one. As soon as a device has
no more credits left, it is no longer allowed to send fragments on
that specific L2CAP channel. A device may grant its peer additional
credits anytime using a separate L2CAP signaling channel.

The LE credit-based flow control mode can be used to provide
QoS mechanisms that enhance the simple buffer overflow preven-
tion defined by the standard. We present in Sec. 5.2 an implemen-
tation of an L2CAP layer allowing to prioritize at run-time either
specific slaves or specific IPv6 traffic from a given node.
IPv6 compression layer. To improve the efficiency of IPv6 com-
munications, RFC 7668 foresees the use of IPv6 header compression
as specified by RFC 6282 [23]. This mechanism allows to compress
the header of IPv6 packets sent within the same subnet from 40
down to 2 bytes. Since the L2CAP layer handles fragmentation,
this layer is a lightweight version of the existing adaptation layer
in Contiki, without its 802.15.4-specific fragmentation mechanism.
Upper layers. RFC 7668 does not foresee any specific change in
IPv6 addressing, neighbor discovery, and packet format. Moreover,
it supports any transport layer on top of IPv6. Hence, BLEach
can reuse any IPv6 implementation for constrained devices such
as Contiki’s uIP, Sensinode’s NSv6, and Arch Rock’s ARv6, and
supports TCP, UDP, or any other upper layer running on top.

4.2 Integration into Contiki
We integrate BLEach into Contiki by reusing its IPv6 and UDP
support and bymapping each of the four lowest layers to an existing
layer in Contiki’s IPv6-over-IEEE 802.15.4 stack as shown in Fig. 4.
Same number of layers, different functionality. BLEach’s low-
est layer, the BLE link and PHY layer, directly maps into Contiki’s
radio layer, but with completely different functionality. Whilst Con-
tiki’s radio layer (and traditional layers tailored to IEEE 802.15.4)
offers direct radio access and immediate feedback on issued radio
commands, this is not the case in the BLE link and PHY layer, as
the access to the radio is decoupled from the upper layers.

BLEach’s parametrization layer maps into Contiki’s radio duty
cycling (RDC) layer. The key difference is that whilst existing RDC

BLEach: Exploiting the Full Potential of IPv6 over BLE SenSys ’17, November 6–8, 2017, Delft, Netherlands

layers in Contiki (e.g., ContikiMAC [16] and X-MAC [10]) directly
issue primitives switching on and off the radio module to control
their duty cycle and provide more energy-efficient communication,
BLEach’s parametrization layer can only carry out an indirect form
of duty cycling by means of connection parameter adaptation.

The L2CAP layer of BLEach directly maps into Contiki’s medium
access control (MAC) layer. Its responsibilities, however, are not
taking care of collision avoidance, back-off strategies and retrans-
mission of packets as in Contiki’s IPv6-over-IEEE 802.15.4 stack (as
these are already accomplished by the BLE link and PHY layer), but
rather to provide fragmentation and flow control, as well as QoS
support by means of traffic prioritization and multiplexing.

Finally, the IPv6 compression layer of BLEach is a subset of
Contiki’s adaptation layer. The latter also needs to fragment IPv6
packets, which is already accomplished by BLEach’s L2CAP.
Easily portable. Because we keep the architecture of BLEach
generic, porting it to an arbitrary BLE platform only consists of
adapting the BLE link and PHY layer implementation—all other
layers remain unchanged. Furthermore, as the size of the buffers
employed for packet fragmentation and frame transmission or re-
ception as well as the maximum number of simultaneous connec-
tions are configurable, developers can optimize the stack for the
hardware platform at hand. This makes it possible to support a
large range of BLE devices, from very constrained platforms such
as the TI CC2650 with only 20 kB of memory to more powerful
platforms like the Nordic Semiconductor nRF52 with 128 kB of
memory. BLEach is also not limited to a specific BLE version and
can be easily configured to use BLE v4.1, v4.2, and v5.0, depending
on the version supported by the target hardware platform.
Application agnostic. Because it strictly adheres to Contiki’s sys-
tem architecture, BLEach is agnostic to the application running
on top; developers may run the same application using IPv6 over
IEEE 802.15.4 or IPv6 over BLE by simply changing the project’s
configuration file at compile time. In Sec. 6.4 we exploit the two
radios on the TI CC2650 to run the same exemplary application on
top of IPv6 over IEEE 802.15.4 and IPv6 over BLE.
Support for multi-radio operation. An interesting avenue for
future work is adding support for concurrently using the multiple
radios available on state-of-the-art platforms. Based on similar prior
efforts [26], doing so requires changes that cross-cut the entire
system stack in Contiki. We believe that combining BLEach and
the existing IEEE 802.15.4 would be a good place to start since they
follow the same architecture and provide compatible interfaces.

4.3 Implementation
We implement BLEach on the TI CC2650 platform, which features
an ARM Cortex-M3 application core with 20 kB of memory and an
ARM Cortex-M0 radio core providing either IEEE 802.15.4 or BLE
communication. We describe next BLEach’s basic modules for each
layer shown in Fig. 4, starting from the BLE link and PHY layer.
ble-cc2650. Our implementation of the BLE link and PHY layer
supports both slave and master mode according to the BLE specifi-
cation v4.1 [5]. In slave mode, the device may only be connected
to a single master at a time. In master mode, the device is able to
maintain connections to multiple slaves, whose number depends on

the selected connection capacity F . In our default implementation,
we limit the connection capacity to 256 bytes in order to support at
least 4 slaves, and allow to select a connection interval in the range
from 20ms to 4000ms and a slave latency between 0 and 500.

The TI CC2650 features an open BLE controller; that is, its ra-
dio core uses shared memory and dedicated handshake hardware
to interact with the application core [42]. The radio core expects
commands that specify the beginning and the end of a BLE event,
as well as which radio channel to use, and does not provide any
autonomous scheduling of BLE advertising or connection events,
BLE buffer management, or AFH mechanism. To support BLE con-
nections, we implement the connection schedule at the application
core using Contiki’s rtimer in order to wake-up the radio core and
issue the BLE command with the right parameters in time for the
connection event to be properly scheduled. The application core
wakes up 1.5ms before the start of a connection event and performs
the following tasks: (i) it uses BLE’s AFH algorithm to select the
data channel to be used during the connection, (ii) adds the data to
be transmitted over the connection to the transmission queue of
the radio core, (iii) enables and initializes the radio core, and finally
(iv) issues the BLE command. Once the radio core completes the
connection event, the application core disables the radio.
ble-null-par. Using the minimal configuration of BLEach, the
parametrization layer makes use of the default parameters set by
the master device and provides an interface for further extensions.
ble-l2cap. In the minimal configuration, the L2CAP layer sup-
ports IPv6-over-BLE transmissions with a maximum length of 1280
bytes split into 256 byte fragments (i.e., a buffer size of θ = 5 frag-
ments is allocated for each connected device). After a link-layer
connection between two devices is established, the master creates a
single L2CAP channel to the slave. The created LE credit-based flow
control channel is then used for any IPv6 packet sent, and master
and slave grant credits to each other to prevent buffer overflows.
The flow control mechanism we provide checks if the credits of a
peer device fall below a threshold τ = 2. If this is the case, γ = 4
additional credits are granted. As γ ≤ θ this simple mechanism
guarantees that two devices can communicate at least one fragment
at any given time and that no buffer overflow occurs.
6lowble and uip.We use Contiki’s sicslowpan to build BLEach’s
6lowble module by stripping away the IPv6 fragmentation func-
tionality so as to provide only IPv6 header compression according
to RFC 6282 [23]. We further use Contiki’s uip [15] suite to pro-
vide BLEach with IPv6 communication, neighbor discovery, address
autoconfiguration, and support for UDP and TCP traffic.

5 EXTENDING BLEACH
We present three modules that extend BLEach with novel BLE func-
tionality: an adaptive duty cycling parametrization layer (Sec. 5.1),
an L2CAP module supporting QoS by means of traffic prioritization
and multiplexing (Sec. 5.2), and a BLE link and PHY layer module
that additionally provides indirect link-quality monitoring (Sec. 5.3).
These extensions are highlighted in Fig. 4 and evaluated in Sec. 6.3.

5.1 Adaptive Radio Duty Cycling
A slave with limited battery capacity may not be able to afford a BLE
connection with a border router using a default set of connection

SenSys ’17, November 6–8, 2017, Delft, Netherlands M. Spörk, C.A. Boano, M. Zimmerling, and K. Römer

parameters chosen to sustain a high traffic load. We thus design
a parametrization layer implementing an adaptive duty-cycling
mechanism that adapts the connection interval at run-time to the
current traffic load. Using this mechanism, a slave can negotiate
with the border router a new set of connection parameters that
better fits its application needs.

Furthermore, this adaptive parametrization layer also allows
the slave to quickly adapt to sudden changes in the traffic load by
temporarily increasing the connection interval if the traffic load
decreases over time or by decreasing the connection interval in case
more bandwidth is needed. Unlike existing adaptive duty-cycling
approaches for IEEE 802.15.4 that tune the radio duty cycle on a
per-node [30] or per-network [46] basis, our approach adapts the
radio duty cycle for each individual BLE connection.
ble-adapt-par. The new parametrization layer extends the basic
ble-null-par module to periodically monitor the BLE connection
and calculates the weighted moving average of the BLE connection
utilization, that is, the percentage of available connection events
actually used to transmit data. If the average utilization drops below
a threshold Ulow = 25%, the adaptation mechanism negotiates a
longer connection interval to increase the energy efficiency. Instead,
if the average utilization increases above a threshold Uup = 75%,
the adaptation mechanism negotiates a shorter connection interval
so that the slave is able to sustain a higher data rate.

To negotiate new connection parameters, the slave sends a BLE
connection parameter request to the master. The master responds
with a BLE connection update request that either confirms or de-
clines the set of proposed connection parameters. BLE specifies that
the new connection parameters take effect six connection events
after the connection update request was sent. This inevitable delay
increases the reaction time of our adaptation mechanism.

5.2 Traffic Prioritization and Multiplexing
L2CAP’s LE credit-based flow control mode can be used to provide
novel QoS mechanisms that enhance the simple buffer overflow
prevention defined by the standard.We establishmultiple L2CAP LE
credit-based flow control channels between peer devices, each one
with its own fragmentation buffer and credit count, and transport
a different type of IPv6 traffic on each channel.

By granting a different amount of credits to each channel, a
device can prioritize a specific type of traffic over another one. Fur-
thermore, a master can prioritize different nodes in the network by
granting fewer credits to slaves with low priority and more credits
to slaves with high priority.
ble-l2cap-qos. We implement this simple principle by extending
the basic ble-l2cap module as follows. First, we use one L2CAP
channel for every IPv6 traffic class supported, multiplexing IPv6
traffic over a single BLE connection. Second, we adapt the fragmen-
tation of the L2CAP layer such that it prioritizes the transmissions
of the channel with the highest credit count. We further allow
IPv6-over-BLE devices to change the priority of incoming traffic
classes dynamically using the standardized L2CAP LE flow control
credit message. Although multiple L2CAP channels for IPv6 are
not foreseen by RFC 7668, we do not violate any specification and
only use standardized primitives to implement our approach.

5.3 Indirect Link-quality Monitoring
Most BLE radios implement an AFH algorithm that blacklists data
channels with insufficient link quality. Unfortunately, several radios
are black boxes and a developer neither knows which metric is
used to estimate the link quality of a data channel nor under which
conditions a channel is blacklisted. We extend BLEach with a BLE
link and PHY layer that implements indirect link-qualitymonitoring
and adapts the list of blacklisted channels at run-time.
ble-cc2650-ext. We extend the basic ble-cc2650 module by
measuring the link-quality of data channels without the need to
actively sense surrounding interference by means of RSSI scan-
ning. In particular, if the status of a completed connection event is
BLE_DONE_NO_SYNC, we increase the number of connection errors
nerr of the current data channel. This status is returned if a BLE
handshake between master and slave could not be performed. If
nerr exceeds a blacklisting threshold β for a data channel, the master
blacklists this channel and updates the channel map by sending a
BLE channel map update. The master may whitelist data channels
after a predefined time to not run out of active data channels.

6 EVALUATION
Our evaluation quantitatively answers the following questions:

• Are our analytical models accurate so they can be used to
find optimized BLE connection parameters? (Sec. 6.1)

• Is BLEach interoperable and efficient with regard to memory,
processing, and energy constraints? (Sec. 6.2)

• How effective are the three exemplary modules we design
in making BLEach adaptive to changes in traffic load, traffic
priorities, and wireless interference? (Sec. 6.3)

• Does BLEach achieve performance gains compared with an
IPv6-over-IEEE 802.15.4 stack? (Sec. 6.4)

6.1 Model Validation
We begin by validating our analytical models from Sec. 3.3.
Setup.We run BLEach on two TI CC2650, one acting as master and
the other as slave. We let the slave exchange D = 512 bytes with
the master for varying data generation intervals tD . To measure la-
tency and energy consumption for different connection parameters,
we connect both devices to a Keysight MSO-S 254A mixed-signal
oscilloscope. We calibrate our analytical models with the hardware-
dependent parameters listed in Table 2, and compare their output
against our measurements for the same connection parameters.
Results. Figs. 5 and 6 plot energy and latency against connection
interval conn_int for two different slave latencies SL and varying
tD ; the connection capacity F is fixed at 256 bytes. We see that
our models are highly accurate. The predicted energy matches the
measured energy and the theoretical upper bound on latency is
always slightly above the measured latency across all settings.

We can make further observations important for parameter tun-
ing. For example, looking at Fig. 5, we see that changing the con-
nection interval conn_int from 20 to 100ms or the slave latency
SL from 0 to 10 decreases the energy consumption by a factor of
2, regardless of the application interval tD . Connection intervals
longer than 100ms result in only marginal energy reductions but in
a linear increase in latency. This is because in this operating regime

BLEach: Exploiting the Full Potential of IPv6 over BLE SenSys ’17, November 6–8, 2017, Delft, Netherlands

0
4
8

12
16
20

20 100 200 300 500

SL = 0

E
ne

rg
y

[m
J] Th. model, tD=1s

Th. model, tD=2s
Th. model, tD=5s

Exp. results, tD=1s
Exp. results, tD=2s
Exp. results, tD=5s

0
2
4
6
8

10

20 100 200 300 500

SL = 10

E
ne

rg
y

[m
J]

Connection interval [ms]

Th. model, tD=1s
Th. model, tD=2s
Th. model, tD=5s

Exp. results, tD=1s
Exp. results, tD=2s
Exp. results, tD=5s

Figure 5: Impact of connection interval and slave latency on
energy consumption for 256 bytes connection capacity.

0

250

500

750

1000

20 100 200 300 500

SL = 0La
te

nc
y

[m
s] Theoretical model

Experimental results

0

250

500

750

1000

20 100 200 300 500

SL = 10La
te

nc
y

[m
s]

Connection interval [ms]

Theoretical model
Experimental results

Figure 6: Impact of connection interval and slave latency on
communication latency for 256 bytes connection capacity.

the idle energy EI dominates. Thus, a connection interval around
100ms gives a good trade-off between energy and latency in this
setting. It is also worth noting that the slave latency SL , which has a
significant impact on energy, has no impact on latency: a slave only
skips connection events in the absence of data to be transmitted.

Fig. 7 plots energy and latency against connection capacity F
for two different tD ; connection interval and slave latency are
fixed to 200ms and 10, respectively. Again, we see that our models
accurately predict performance. We also see that the connection
capacity F affects energy only minimally, but has a strong impact
on latency. Indeed, we learn from Fig. 7 that by increasing F from
64 to 256, latency drops by a factor of 3. The impact of F on energy
becomes more visible at frequent traffic. For tD = 1 s, energy drops
by 8% when increasing F from 64 to 256. These findings are impor-
tant insights when tuning BLE connection parameters to optimize
performance and to meet given application requirements.

6.2 Evaluating Minimal BLEach
Next, we run experiments using BLEach’s minimal configuration
(ble-cc2650 + ble-null-par + ble-l2cap), evaluating interoper-
ability, memory footprint, processing overhead, and energy cost.

2,2
2,4
2,6
2,8
3,0

64 80 96 128 160 192 256

E
ne

rg
y

[m
J] Theoretical model

Experimental results

0,0

0,5

1,0

1,5

2,0

64 80 96 128 160 192 256

T
im

e
[s

]

Connection capacity [bytes]

Theoretical model
Experimental results

(a) tD = 2000 ms

4,5

6,0

7,5

9,0

64 80 96 128 160 192 256

E
ne

rg
y

[m
J] Theoretical model

Experimental results

0,0

0,5

1,0

1,5

2,0

64 80 96 128 160 192 256
T

im
e

[s
]

Connection capacity [bytes]

Theoretical model
Experimental results

(b) tD = 5000 ms

Figure 7: Impact of connection capacity on energy consump-
tion and latency for a connection interval of 200ms and a
slave latency of 10 for two different application intervals tD .

Table 3: Interoperability of BLEach.
Master device Interoperable? Energy cost slave
TI CC2650 ✓ 103.796 ± 0.659 mJ
Raspberry Pi 3 ✓ 103.821 ± 0.895 mJ
LogiLink BZ0015 ✓ 104.597 ± 0.791 mJ

6.2.1 Interoperability. Nodes running BLEach are interoperable
with any border router compliant with RFC 7668. To demonstrate
this, we deploy BLEach on a TI CC2650 device acting as slave
and let it interact with three different devices acting as master:
(i) a LogiLink BZ0015 BLE-USB dongle attached to a Raspberry
Pi 1 Model B, (ii) a Raspberry Pi 3 with an embedded Cypress
Semiconductor BCM43438 BLE radio, and (iii) a TI CC2650. Both
Pis run the Raspbian OS with the BlueZ stack [7] and the 6LoWPAN
driver; the latter supports a maximum fragmentation size of 128
bytes. The TI CC2650 acting as a master runs BLEach in the border
router configuration, using a fragmentation size of 128 bytes for a
fair comparison with the two Pis. We instruct the slave to transmit
a 256-byte IPv6 packet to the master every second. The master is
supposed to always reply with an IPv6 packet of the same length,
and to instruct the slave to use conn_int = 125 ms and SL = 0. We
measure the energy consumption of the slave using the oscilloscope.
We verify in different runs that the slave successfully exchanges
IPv6 packets with all three masters. Table 3 shows that the slave
consumes the same energy regardless of the master it talks to.

SenSys ’17, November 6–8, 2017, Delft, Netherlands M. Spörk, C.A. Boano, M. Zimmerling, and K. Römer

Table 4: Memory footprint of BLEach when supporting a
maximum IPv6 packet length of D = 512 bytes.
Device RAM usage [kB] ROM usage [kB]
Slave 3.318 10.941
Master (1 slave) 3.318 12.938
Master (2 slaves) 5.771 13.023
Master (4 slaves) 10.678 13.023

6.2.2 Memory footprint. We quantify the memory footprint of
BLEach on slave and master devices in terms of RAM and ROM us-
age. Table 4 shows BLEach’s footprint when supporting a maximum
IPv6 length of D = 512 bytes. In this configuration, the master can
support up to 4 slaves simultaneously; 8 slaves would be possible
with D = 200 bytes. The RAM usage of a master with 1 supported
slave is the same as the RAM usage of a slave; the ROM usage is
slightly higher. A footprint of 3.3 kB in RAM and 10.9 kB in ROM
is a good compromise for IoT devices, yet the former can be fur-
ther reduced by configuring BLEach with a smaller D. For instance,
with D = 64 bytes, the slave requires only 1.53 kB of RAM. Due
to the memory efficiency of BLE, BLEach is very lightweight and
well-suited for resource-constrained embedded IoT devices.

6.2.3 Processing overhead. To evaluate the processing overhead
of BLEach, we measure the duration of UDP transmissions with
different payload sizes from slave to master using the oscilloscope
and break down the time spent in each layer of the stack (conn_int
= 50 ms and SL = 0). The x-axis in Fig. 8 shows the IPv6 packet
length, including IPv6 header, UDP header, and UDP payload.

Fig. 8 shows that the largest fraction of time is spent in the BLE
controller performing the actual data transmission. Indeed, we no-
tice that the higher the connection capacity, the lower the absolute
time spent by the BLE controller to complete the transfer. Com-
pared to this fraction of time, the processing time of the remaining
layers accounts for only 1.5–4.7 %. It is important to highlight that
the operation of the BLE controller is in most cases hidden from
the developer and that this overhead is not introduced by BLEach.

Fig. 8 also shows that the L2CAP layer performing fragmentation
accounts for the largest processing overhead among the upper
layers in BLEach, especially when the connection capacity F is
small. When F is much smaller than the UDP payload, the L2CAP
layer needs to process many small fragments and its efficiency
decreases. This means that employing larger fragments is a better
choice. Even more so, as the processing time of the BLE controller
is two orders of magnitude larger than that of the L2CAP layer, it
is more efficient to accumulate data at a BLE node and send it in
bigger chunks. The overhead of the network and transport layers,
instead, varies only minimally as a function of the payload length.

6.2.4 Energy consumption. We also evaluate the energy con-
sumption of a TI CC2650 master running BLEach as a function of
the number of connected slaves, and compare it with the energy
expenditure of a TI CC2650 slave device using BLEach. We employ
the aforementioned setup and let each slave in the network period-
ically send IPv6 packets with a length of 256 bytes to the master
using a connection interval conn_int = 125 ms, a slave latency
SL = 0, and F = 256 bytes. We then use the oscilloscope to measure
the energy consumption of each individual device.

95

96

97

98

99

100

64 128 256

F = 64 bytes

%
 o

f t
im

e

IPv6 packet length [bytes]

BLE link and PHY
Parametrization + L2CAP

34μs 51μs 81μs

55μs
57μs 62μs

60μs

121μs

269μs

3,1ms

7ms
15ms

95

96

97

98

99

100

64 128 256

F = 256 bytes

%
 o

f t
im

e

IPv6 packet length [bytes]

IPv6 Compression
Network

34μs 50μs 80μs

55μs 57μs 62μs

60μs

78μs

122μs

3,1ms

4,6ms

7,9ms

Figure 8: Breakdown of BLEach’s processing time per layer
when serving IPv6 transmissions of varying packet length.

 0

 15

 30

 45

 60

1 2 3 4
E

ne
rg

y
[m

J]

Number of slaves supported by the master

Slave
Master

+44%

+141%
+207%

+276%

Figure 9: Energy consumption of slave and master running
BLEach against the number of supported slaves in a subnet.

Fig. 9 shows that the energy consumption of themaster is slightly
higher than the one of the slave when having only one slave con-
nected, and that it increases proportionally to the number of con-
nected slaves. Instead, a slave does not exhibit any increase in
energy consumption as more slaves connect to the master.

6.3 Evaluating Extended BLEach
We evaluate next the three extension modules we designed for
BLEach—adaptive duty cycling, IPv6-over-BLE traffic prioritization
and multiplexing, and indirect link-quality monitoring—and show
that they help in increasing the network performance and resilience.

6.3.1 Adaptive duty cycling. We first evaluate the ability of the
ble-adapt-par module described in Sec. 5.1 to adapt the connec-
tion interval at run-time to unforeseen changes in traffic load. To
this end, we let two slave devices communicate to a master. The first
slave runs BLEach’s ble-rdc RDC layer and uses fixed connection
parameters (conn_int = 62.5ms and SL = 0), which correspond to
the default settings in Linux’ BlueZ stack. The second slave runs
ble-adapt-par, adapting the connection interval at runtime. We
vary the traffic load of the slaves over time. Each slave initially
schedules the transmission of a 256-byte packet every second. The
number of scheduled transmissions is then halved, doubled, quadru-
pled, and finally reduced to a quarter in consecutive phases. We
measure power draw and packet delivery rate of the two slaves.

Fig. 10 (top) plots the scheduled transmissions over time, which
result in different packet rates. Below we plot the connection in-
tervals selected by the two slaves. The two charts at the bottom of
Fig. 10 plot packet delivery rate and power draw of both slaves.

BLEach: Exploiting the Full Potential of IPv6 over BLE SenSys ’17, November 6–8, 2017, Delft, Netherlands

0 20 40 60 80

S
ch

e
d
u
le

d
tr

a
n
sm

. 1 packet/s 0.5 packets/s 1 packet/s 4 packets/s

0 20 40 60 80

0

500

1000

co
n
n
_i

n
t

[m
s] No adaptation Adaptive RDC layer

0 20 40 60 80

50

75

100

S
u
st

a
in

e
d

d
e
liv

e
ry

 r
a
te

 [
%

]

No adaptation Adaptive RDC layer

0 20 40 60 80
Time [s]

1.00

2.00

Po
w

e
r

[m
W

]

No adaptation Adaptive RDC layer

Figure 10: Performance of BLEach with and without adap-
tive duty cycling as the traffic load changes over time.

 0

 1

 2

 3

 0 20 40 60 80

U
til

iz
at

io
n

[k
B

/s
] A B C

 0

 1

 2

 3

 0 20 40 60 80

D
at

a
ra

te
[k

B
/s

] A B C

 1
 2
 3

 0 20 40 60 80

P
rio

rit
y

Le
ve

l

Time [s]

A B C

Figure 11: IPv6-over-BLE trafficmultiplexing and prioritiza-
tion in action, as provided by ble-l2cap-qos in BLEach.

First, we observe that our adaptive duty cycling module achieves
a significant reduction in power draw of up to 50 % compared with
the static setting. Indeed, as visible in Fig. 10, the latter is optimized
for a very high traffic load, which causes excess energy consumption
during all other phases with lighter traffic load.

Second, we see a slight drop in packet delivery rate at the begin-
ning of the phase with the highest traffic load. This is because our
current implementation of ble-adapt-par is compliant with the
BLE standard, which specifies that a parameter change takes effect
exactly after six connection events [5]. Thus, if the current connec-
tion interval is 500ms, which is the case right before the high-load
phase starts, it takes at least 3 seconds until the first parameter
update occurs. Nevertheless, using BLEach, we would be able to
easily overrule these specifications on open BLE controllers, such
as the TI CC2650, which is not foreseen by existing BLE stacks.

Third, looking at the arrow in Fig. 10, we can see that the few
additional packets sent by the slave to the master to inform about
its preferred parameters incur a negligible cost. This cost is in fact
a very good investment given the energy savings it enables.

 0

 10

 20

 30

 40

 50

No
interf.

Wi-Fi
(1 ch.)

Block
(1 ch.)

Block
(2 ch.)

T
ra

ns
fe

r
du

ra
tio

n
[s

]

Interference type

No blacklisting
Blacklisting (β = 3)
Blacklisting (β = 1)

 0

 15

 30

 45

 60

 75

No
interf.

Wi-Fi
(1 ch.)

Block
(1 ch.)

Block
(2 ch.)

E
ne

rg
y

co
ns

um
pt

io
n

[m
J]

Interference type

No blacklisting
Blacklisting (β = 3)
Blacklisting (β = 1)

Figure 12: Benefit of indirect link-quality monitoring and
channel blacklisting in the presence of radio interference.

6.3.2 QoS support. BLEach’s ble-l2cap-qosmodule described
in Sec. 5.2 allows to prioritize and multiplex IPv6-over-BLE traffic.
We now evaluate its performance by running an exemplary BLE
system consisting of a master M and a slave S employing three
types of IPv6-over-BLE traffic A, B, and C . Traffic A transports
sensor data collected by S , traffic C embeds actuation commands
issued by S to other nodes in the network in response to specific
sensed events, whilst traffic B is maintenance ICMPv6 traffic. Each
traffic class is assigned its own L2CAP channel and a priority ad-
justable at run-time by the master using L2CAP’s LE credit-based
flow control mechanism. We study how the operations of BLEach’s
ble-l2cap-qos module affect the performance of the overall sys-
tem. In our experiments, we select conn_int = 125ms and F = 256
bytes, i.e., the BLE link layer can send at a maximum data rate of 2
kB/s using eight connections per second carrying 256 bytes each.

Fig. 11 (middle) shows the data rate of the three traffic sources.
Starting from time 0, the slave S transmits periodic ICMPv6 trafficA
at 512 bytes/s. At time 20, S generates 1024 bytes/s traffic of type B,
signaling to the masterM the occurrence of a specific event. At time
40, S reacts on the detected event by issuing actuation commands
for other nodes in the network and hence traffic of type C at a data
rate of 1024 bytes/s. As the sum of the three traffic flows exceeds
the maximum utilization of the BLE link between S and M , the
higher-priority traffic C gets scheduled first with the result that
only a portion of the lower-priority traffic B is served.

At time 60, the masterM is interested in verifying that the actua-
tion commands previously sent through the network have achieved
the desired effect, and dynamically switches the priority of traffic B
and traffic C , thus prioritizing sensed data. Fig. 11 shows that, as a
result, as soon as the number of credits left for trafficC are used up,
traffic A and B gets scheduled first, thereby prioritizing sensed data
as instructed by the master. Our exemplary implementation of the
ble-l2cap-qos module only assigns credits; dynamically reducing
credits at run-time is an interesting direction for future work.

6.3.3 Indirect link-quality monitoring. We now look at BLEach’s
ble-cc2650-ext module described in Sec. 5.3, assessing the ben-
efits provided by indirect link-quality monitoring in the face of
wireless interference. To this end, we generate controlled interfer-
ence using JamLab [8]. The interference resembles either Wi-Fi

SenSys ’17, November 6–8, 2017, Delft, Netherlands M. Spörk, C.A. Boano, M. Zimmerling, and K. Römer

Table 5: Processing time per layer (inmilliseconds) for the IPv6-over-IEEE 802.15.4 and BLEach stacks for varying payload size.

IPv6 over IEEE 802.15.4 IPv6 over BLE (BLEach)
Payload Radio RDC MAC Upper Layers BLE L.&P. Parametr. L2CAP Upper Layers
128 bytes 9.10± 2.23 17.35± 0.21 0.025± 0.001 0.120± 0.001 4.53± 0.02 0.022± 0.001 0.057± 0.001 0.107± 0.001
256 bytes 16.48± 2.45 23.32± 0.27 0.054± 0.001 0.254± 0.001 7.84± 0.02 0.041± 0.001 0.081± 0.001 0.142± 0.001
512 bytes 27.33± 2.49 29.22± 0.35 0.090± 0.002 0.406± 0.001 16.47± 0.04 0.084± 0.004 0.201± 0.003 0.213± 0.001

data exchange on a single Wi-Fi channel (Wi-Fi 1 ch.), or one or two
extremely congested Wi-Fi channels due to improper or malicious
activity in the surrounding (Block (1 ch.) and Block (2 ch.)).

We use an application that exchanges 50 consecutive IPv6 pack-
ets with a length of 256 bytes between a master and a slave using
conn_int = 250 ms and SL = 0. Each packet needs to be acknowl-
edged before the next one can be transmitted. We run BLEach using
ble-cc2650-ext and show that the ability to monitor the connec-
tion event status allows to quickly influence the channel_map used
by the BLE controller to select the channel for sending packets.

Fig. 12 shows that this significantly reduces the duration of
the data exchange between master and slave as well as the energy
consumption. The plot also highlights how aggressively blacklisting
a channel after only one failed connection event (β=1) can actually
minimize both latency and energy costs. Finally, Fig. 12 also shows
that, in absence of interference, no additional energy is consumed
by ble-cc2650-ext. Indeed, the implemented strategy does not
make use of passive RSSI scanning, which would cause the radio to
remain active for an additional period of time as in [33].

6.4 Comparison with IPv6 over IEEE 802.15.4
The TI CC2650 comes with a BLE and an IEEE 802.15.4 radio, allow-
ing us to compare the performance of BLEach against Contiki’s IPv6-
over-IEEE 802.15.4 stack on the same platform. Because BLEach
fully adheres to Contiki’s system and stack architecture, we can run
the same application without any changes on top of both stacks.
We enable ContikiMAC’s phase lock optimization and configure a
wake-up interval wakeup_int of 62.5 and 125ms (a channel check
rate of 16 and 8 respectively). We compare its performance with our
BLEach stack configured with a connection interval conn_int of 62.5
and 125ms, respectively, to ensure a fair comparison. Both radios
transmit packets with a transmission power of 0 dBm. ContikiMAC
is configured with a guard time of 22.9ms and a maximum phase
strobe time of 30.52ms (1500 and 2000 rtimer ticks, respectively)
and the maximum number of frame retries of CSMA is set to 1. We
employ an application that triggers a series of 60 request-response
interactions between a client and a server. Every second, the client
(BLE slave) sends one UDP packet of variable size to the server
(BLE master), who replies with an UDP packet of the same length.
Energy consumption. Fig. 13 plots the energy consumption of
the client (BLE slave) measured with the oscilloscope for different
IPv6 packet sizes. The x-axis in Fig. 13 shows the overall length of
the exchanged IPv6 packet, including IPv6 header, UDP header, and
UDP payload. BLEach consumes on average approximately 50% less
energy than the IPv6-over-IEEE 802.15.4 stack, regardless of the
selected wake-up or connection interval, as well as packet length.
This energy saving can be explained by analyzing the different
processing times of the two stacks.

 0

 100

 200

 300

64 128 256 512 1024

E
ne

rg
y

[m
J]

IPv6 packet length

IEEE 802.15.4
BLEach

(a) Wake-up/connection interval of 62.5 ms

 0

 100

 200

 300

64 128 256 512 1024

E
ne

rg
y

[m
J]

IPv6 packet length

IEEE 802.15.4
BLEach

(b) Wake-up/connection interval of 125 ms

Figure 13: Average power draw of BLEach and the IPv6-over-
IEEE 802.15.4. stack of Contiki on the TI CC2650.

Processing time. Table 5 shows the processing time of each layer
in the two stacks for different payload length and a wakeup_int or
conn_int of 125ms. The IPv6-over-IEEE 802.15.4 stack exhibits a
higher overhead compared to BLEach due to the large CPU time
spent in the RDC layer scheduling ContikiMAC’s strobe transmis-
sions and clear channel assessments, as well as due to the higher
processing time in the radio layer. There are three reasons for the
higher radio time when using IEEE 802.15.4. First, IEEE 802.15.4
transmits at 250 kbit/s, which is four times lower than the data
rate of BLE (1Mbit/s). Hence, when transmitting the same number
of bytes, IEEE 802.15.4 has a longer transmission time compared
to BLE. Second, the maximum payload length of IEEE 802.15.4
is limited to 125 bytes. Packets exceeding this maximum payload
length are fragmented into smaller chunks and transmitted sequen-
tially. Compared to IEEE 802.15.4, the connection capacity F of
BLE is not limited by the BLE specification and is configured to be
F = 256 bytes in BLEach. Therefore, IPv6 over IEEE 802.15.4 needs
to transmit more fragments when sending long IPv6 packets than
BLEach, introducing link-layer overhead with every additional frag-
ment. Third, ContikiMACwith phase lock enabled repeatedly sends

BLEach: Exploiting the Full Potential of IPv6 over BLE SenSys ’17, November 6–8, 2017, Delft, Netherlands

-100

-90

-80

-70

-60

 10 20 30 40 50 60 70 80 90 100

R
S

S
 [d

B
m

]

Distance [m]

BLE (0 dBm)
IEEE 802.15.4 (0 dBm)

BLE (-15 dBm)
IEEE 802.15.4 (-15 dBm)

Figure 14: Received signal strength measured with the TI
CC2650 using the BLE and IEEE 802.15.4 radio modes.

the first fragment of every packet exchange until it is acknowledged,
contributing to the higher radio time shown in Table 5.
Communication range.Although the previous experiments show
that BLE is more energy efficient than IEEE 802.15.4 when using the
same platform (confirming the results of [13, 40]), it is important
to set this into perspective with the achievable communication
range of both wireless technologies. We experimentally observe
that IEEE 802.15.4 supports a larger range by comparing the com-
munication range of two TI CC2650 devices deployed outdoor with
direct line-of-sight that exchange IPv6-over-IEEE 802.15.4 and IPv6-
over-BLE packets. Fig. 14 shows the evolution of the received signal
strength (RSS) as a function of the distance between the two nodes
for two different transmission power levels. The figure also shows
the distance at which no more packets were received, highlighted
by the dots at -100 dBm, where both BLE and IEEE 802.15.4 fail
to exchange messages. When sending packets at a transmission
power of 0 dBm, the maximum achievable communication range is
75 and 90 meters for BLE and IEEE 802.15.4, respectively, whilst it
is 24 and 38 meters when using a transmission power of -15 dBm.
This allows us to conclude that, when using the TI CC2650 in BLE
mode, the communication range is indeed shorter than the one that
can be reached using IEEE 802.15.4.

7 RELATEDWORK
The lack of open-source BLE stacks has significantly hindered BLE
networking research [41]. Instead, the community has focused
on designing battery-driven [41] or energy-harvesting [12] BLE
platforms and on exploiting BLE’s connection-less mode for other
services, such as neighbor discovery [25], indoor localization [18],
group management [20], and locality-based authorization [19]. Be-
lowwe review relatedwork on BLE stacks for embedded IoT devices,
run-time adaptability, and relevant BLE networking projects.
BLE stacks. There exists a number of proprietary BLE stacks lack-
ing IPv6 support, for example, from TI [43] andMindtree [32]. Open-
source BLE support in TinyOS and Contiki is completely missing
or limited. Contiki only features transmissions of advertisement
packets without IPv6 for the TI CC2650 radio, and a closed-source
BLE radio and L2CAP slave implementation for the nRF52 that does
not support fragmentation of IPv6 packets. Android uses the Blue-
Droid stack, which supports both classic Bluetooth and BLE but

not IPv6 over BLE [1]. Apache MyNewt [2] and Zephyr [44] come
with stacks implementing full-fledged BLE connections. However,
Apache’s NimBLE stack does not support IPv6 and is memory-
hungry (4.5 kB of RAM, 69 kB of flash), and Zephyr’s stack supports
IPv6 over BLE only on slave devices, and cannot fragment large
IPv6 packets, which makes it unsuitable for constrained IoT devices.

In contrast to these stacks, BLEach is open-source, streamlined
for easy integration into Contiki, supports IPv6 on master and slave
devices, and lightweight to be used on constrained IoT devices. In
addition, it provides an API to tune key BLE parameters at run-time.
BLE measurements. Other works have studied the energy effi-
ciency and timeliness of BLE. Gomez et al. [21] have reported the
energy consumption and packet latency of Attribute Protocol com-
munications with a maximum link-layer packet length of 37 bytes.
Dementyev et al. [13] have measured the energy consumption of
BLE slaves that periodically send 8-byte data packets over a BLE
connection. Likewise, Siekkinen et al. [40] have studied the energy
consumption of connection-less and connection-based BLE for a
maximum link-layer payload size of 27 bytes. Both studies con-
clude that the BLE link-layer has a higher energy efficiency than
IEEE 802.15.4 in their experimental setup.

Our experiments confirm their results and further provide a
detailed comparison of IPv6 over BLE and IPv6 over IEEE 802.15.4
on the same hardware platform for a wide range of IPv6 packet
lengths, as well as an analysis of the processing time introduced by
each layer of the communication stack.
BLE runtime adaptability. Gomez et al. show that connection
interval and slave latency impact BLE performance, suggesting that
these parameters could be tuned to meet given application require-
ments [21]. Similarly, Lee et al. report on experiments showing
that the connection interval affects the packet delivery rate [29].
Kindt et al. adapt the connection interval to traffic load for energy
efficiency [27]. However, their approach lacks practicality, since
they assume that the adaptation logic runs on the master, whose
firmware is often not easily accessible (e.g., an IPv6 gateway or
smart-phone). Mikhaylov adjusts the connection interval to reduce
the time and energy needed for BLE connection establishment [31].

Unlike these works, we accurately model the impact of all key pa-
rameters affecting connection-based communication performance
(i.e., including slave latency and connection capacity), and expose
them to slaves through a standard-compliant negotiation-based in-
terface. Moreover, to the best of our knowledge, we are the first to
consider adaptive L2CAP functionality, providing QoS guarantees
by means of dynamic traffic multiplexing and traffic prioritization.
Other relevant BLE networking research. A few works aim to
unleash BLE from rigid single-hop networking. For instance, Roest
presents a BLE port of the all-to-all Chaos primitive [28], demon-
strating performance gains when nodes use all 40 BLE channels in
a randomized fashion [39]. Lee et al. exploit a powerful embedded
Linux PC to run RPL over a tree-based multi-hop topology [29],
showing performance benefits of RPL over BLE compared to RPL
over IEEE 802.15.4. Hussain et al. enable mobility through seamless
BLE connection migration between gateways [22].

We believe that the work presented in this paper and its open-
source availability can empower more of such novel BLE network-
ing research in the years to come.

SenSys ’17, November 6–8, 2017, Delft, Netherlands M. Spörk, C.A. Boano, M. Zimmerling, and K. Römer

8 CONCLUSIONS
BLEach is the first open-source stack with full-fledged support for
IPv6 over BLE. It is modular, interoperable, efficient, and can be
ported to a variety of BLE platforms with minimal effort. BLEach
exposes several key parameters to fine-tune communication perfor-
mance at runtime, using our accurate latency and energy models.
Three novel modules we design make BLEach adaptive to traffic
fluctuations and wireless interference, while providing QoS guar-
antees through on-demand traffic prioritization and multiplexing.

ACKNOWLEDGMENTS
We thank our Shepherd, Brano Kusy, and all the anonymous review-
ers for their constructive comments. This work has been performed
within the LEAD project “Dependable Internet of Things in Ad-
verse Environments” funded by Graz University of Technology. This
work was also partially funded by DFGwithin cfaed and the SCOTT
project. SCOTT (http://www.scott-project.eu) has received funding
from the Electronic Component Systems for European Leadership
Joint Undertaking under grant agreement No 737422. This joint
undertaking receives support from the European Unions Horizon
2020 research and innovation programme and Austria, Spain, Fin-
land, Ireland, Sweden, Germany, Poland, Portugal, Netherlands,
Belgium, Norway. SCOTT is also funded by the Austrian Federal
Ministry of Transport, Innovation and Technology (BMVIT) under
the program “ICT of the Future” between May 2017 and April 2020.
More information at https://iktderzukunft.at/en/.

REFERENCES
[1] Android. 2017. Bluetooth. https://source.android.com/devices/bluetooth. (2017).
[2] Apache MyNewt. 2017. NimBLE Introduction. http://mynewt.apache.org/

network/ble/ble_intro/. (2017).
[3] B. Carpenter et al. 2014. RFC 6775 - Significance of IPv6 Interface Identifiers.

https://tools.ietf.org/html/rfc7136. (2014).
[4] BLE Home. 2017. iAlert Sensing Motion: Quick Start Guide. http://www.blehome.

com/ialert.htm. (2017).
[5] Bluetooth SIG. 2013. Specification of the Bluetooth System – Covered

Core Package version: 4.1. https://www.bluetooth.org/en-us/specification/
adopted-specifications. (2013).

[6] Bluetooth SIG. 2014. Internet Protocol Support Profile - Bluetooth
Specification version: 1.0.0. https://www.bluetooth.org/en-us/specification/
adopted-specifications. (2014).

[7] BlueZ Project. 2016. BlueZ - Official Linux Bluetooth protocol stack. http:
//www.bluez.org/. (2016).

[8] C.A. Boano, T. Voigt, C. Noda, K. Römer, andM.A. Zúñiga. 2011. JamLab: Augment-
ing Sensornet Testbeds with Realistic and Controlled Interference Generation. In
Proc. of the 10th ACM/IEEE IPSN Conference.

[9] W. Bober and C.J. Bleakley. 2014. BailighPulse: A Low Duty Cycle Data Gathering
Protocol for Mostly-off Wireless Sensor Networks. Computer Networks 69 (2014).

[10] M. Buettner, G.V. Yee, E. Anderson, and R. Han. 2006. X-MAC: a short preamble
MAC protocol for duty-cycled wireless sensor networks. In Proc. of the 4th ACM
SenSys Conference.

[11] N. Burri, P. von Rickenbach, and R. Wattenhofer. 2007. Dozer: Ultra-low Power
Data Gathering in Sensor Networks. In Proceedings of the 6th ACM/IEEE Interna-
tional Conference on Information Processing in Sensor Networks (IPSN).

[12] B. Campbell, J. Adkins, and P. Dutta. 2016. Cinamin: A Perpetual and Nearly
Invisible BLE Beacon. In Proc. of the 1st NextMote Workshop.

[13] A. Dementyev, S. Hodges, S. Taylor, and J. Smith. 2013. Power Consumption
Analysis of Bluetooth Low Energy, ZigBee and ANT Sensor Nodes in a Cyclic
Sleep Scenario. In Proc. of the 1st IEEE IWS Symposium.

[14] K.M. Diaz, D.J. Krupka, M.J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J.E. Schwartz,
and K.W. Davidson. 2015. Fitbit: An Accurate and Reliable Device for Wireless
Physical Activity Tracking. International Journal of Cardiology 185 (2015).

[15] A. Dunkels. 2002. uIP-A free small TCP/IP stack. Technical Report.
[16] A. Dunkels. 2011. The ContikiMAC Radio Duty Cycling Protocol. Technical Report

T2011:13. Swedish Institute of Computer Science.

[17] A. Dunkels, B. Grönvall, and T. Voigt. 2004. Contiki - a Lightweight and Flexi-
ble Operating System for Tiny Networked Sensors. In Proc. of the 1st EmNetS
Workshop.

[18] R. Faragher and R. Harle. 2015. Location Fingerprinting With Bluetooth Low
Energy Beacons. IEEE Journal on Selected Areas in Communications 33, 11 (2015),
2418–2428.

[19] J. Fürst, K. Chen, M. Aljarrah, and P. Bonnet. 2016. Leveraging Physical Locality
to Integrate Smart Appliances in Non-Residential Buildings with Ultrasound and
Bluetooth Low Energy. In Proc. of the 1st IEEE IoTDI Conference.

[20] D. Giovanelli, B. Milosevic, C. Kiraly, A.L. Murphy, and E. Farella. 2016. Dynamic
group management with Bluetooth Low Energy. In Proc. of the 2nd IEEE ISC2
Conference.

[21] C. Gomez, J. Oller, and J. Paradells. 2012. Overview and Evaluation of Bluetooth
Low Energy: An Emerging Low-PowerWireless Technology. Sensors 12, 9 (2012).

[22] S.R. Hussain, S. Mehnaz, S. Nirjon, and E. Bertino. 2017. SeamBlue: Seamless
Bluetooth Low Energy Connection Migration for Unmodified IoT Devices. In
Proc. of the 14th EWSN Conference.

[23] Ed. J. Hui, Arch Rock Corporation, P. Thubert, and Cisco. 2011. RFC 6282 -
Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks.
https://tools.ietf.org/html/rfc6282. (2011).

[24] J. Nieminen et al. 2015. RFC 7668 - IPv6 over Bluetooth Low Energy. https:
//tools.ietf.org/html/rfc7668. (2015).

[25] C. Julien, C. Liu, A.L. Murphy, and G.P. Picco. 2017. BLEnd: Practical Continuous
Neighbor Discovery for Bluetooth Low Energy. In Proc. of the 16th ACM/IEEE
IPSN Conference.

[26] R. Jurdak, K. Klues, B. Kusy, C. Richter, K. Langendoen, and M. Brunig. 2011.
Opal: A Multiradio Platform for High Throughput Wireless Sensor Networks.
IEEE Embedded Systems Letters 3, 4 (2011).

[27] P. Kindt, D. Yunge, M. Gopp, and S. Chakraborty. 2015. Adaptive Online Power-
Management for Bluetooth LowEnergy. In Proc. of the IEEE INFOCOMConference.

[28] O. Landsiedel, F. Ferrari, and M. Zimmerling. 2013. Chaos: Versatile and Efficient
All-to-all Data Sharing and In-network Processing at Scale. In Proc. of the 11th
ACM SenSys Conference.

[29] T. Lee, M. S. Lee, H. S. Kim, and S. Bahk. 2016. A Synergistic Architecture for
RPL over BLE. In Proc. of the 13th IEEE SECON Conference.

[30] Andreas Meier, Matthias Woehrle, Marco Zimmerling, and Lothar Thiele. 2010.
ZeroCal: Automatic MAC Protocol Calibration. In Proceedings of the 6th IEEE Int.
Conf. on Distributed Computing in Sensor Systems (DCOSS).

[31] K. Mikhaylov. 2014. Accelerated Connection Establishment (ACE) Mechanism
for Bluetooth Low Energy. In Proc. of the IEEE PIMRC Conference.

[32] Mindtree. 2017. EtherMind Bluetooth 5 and 4.2 Stack & Profile for
BR/EDR and Bluetooth low energy. http://www.mindtree.com/solutions/
bluetooth-technology/ethermind. (2017).

[33] R. Musaloiu-E. and A. Terzis. 2007. Minimising the Effect of WiFi Interference
in 802.15.4 Wireless Sensor Networks. International Journal of Sensor Networks
(IJSNet) 3, 1 (2007).

[34] B. Al Nahas, S. Duquennoy, V. Iyer, and T. Voigt. 2014. Low-Power Listening
Goes Multi-Channel. In Proceedings of the 10th IEEE DCOSS Conference.

[35] P. Narendra, S. Duquennoy, and T. Voigt. 2015. BLE and IEEE 802.15.4 in the
IoT: Evaluation and Interoperability Considerations. In Proc. of the 13th INDIN
Conference. 919–922.

[36] Nuki. 2017. The Bluetooth Door Lock for Smart Access via Smartphone. https:
//nuki.io/en/. (2017).

[37] R. Quinnell. 2017. BLE Module Guide for Quick and Easy Product Selection.
Electronic Products Magazine (2017).

[38] Roche Media Release. 2016. Roche launches innovative Accu-Chek Guide blood
glucose monitoring system. (Aug. 2016).

[39] C. Roest. 2015. Enabling the Chaos Networking Primitive on Bluetooth LE. Master’s
thesis. Delft University of Technology, Delft, The Netherlands.

[40] M. Siekkinen, M. Hiienkari, J.K. Nurminen, and J. Nieminen. 2012. How Low En-
ergy is Bluetooth Low Energy? Comparative Measurements with ZigBee/802.15.4.
In Proc. of the IEEE WCNCWWorkshop.

[41] S.Raza, P. Misra, Z. He, and T. Voigt. 2017. Building the Internet of Things with
Bluetooth Smart. Ad Hoc Networks 57 (2017).

[42] Texas Instruments. 2016. CC13xx, CC26xx SimpleLink Wireless MCU Technical
Reference Manual. http://www.ti.com/lit/ug/swcu117f/swcu117f.pdf. (2016).

[43] Texas Instruments. 2017. Bluetooth Low Energy software stack. http://www.ti.
com/tool/ble-stack. (2017).

[44] The Zephyr Project. 2017. An RTOS for IoT. https://www.zephyrproject.org/.
(2017).

[45] Z. Shelby et al. 2012. RFC 6775 - Neighbor Discovery Optimization for IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPANs). https://tools.ietf.
org/html/rfc6775. (2012).

[46] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele. 2012. pTunes:
Runtime Parameter Adaptation for Low-power MAC Protocols. In Proc. of the
11th ACM/IEEE IPSN Conference.

http://www.scott-project.eu
https://iktderzukunft.at/en/
https://source.android.com/devices/bluetooth
http://mynewt.apache.org/network/ble/ble_intro/
http://mynewt.apache.org/network/ble/ble_intro/
https://tools.ietf.org/html/rfc7136
http://www.blehome.com/ialert.htm
http://www.blehome.com/ialert.htm
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
http://www.bluez.org/
http://www.bluez.org/
https://tools.ietf.org/html/rfc6282
https://tools.ietf.org/html/rfc7668
https://tools.ietf.org/html/rfc7668
http://www.mindtree.com/solutions/bluetooth-technology/ethermind
http://www.mindtree.com/solutions/bluetooth-technology/ethermind
https://nuki.io/en/
https://nuki.io/en/
http://www.ti.com/lit/ug/swcu117f/swcu117f.pdf
http://www.ti.com/tool/ble-stack
http://www.ti.com/tool/ble-stack
https://www.zephyrproject.org/
https://tools.ietf.org/html/rfc6775
https://tools.ietf.org/html/rfc6775

	Abstract
	1 Introduction
	2 Challenges of IPv6 over BLE
	3 Understanding Connection-based BLE Communication
	3.1 Anatomy of Connection Events
	3.2 Relevant Connection Parameters
	3.3 Modeling the Impact of BLE Connection Parameters on Network Performance

	4 BLEach: Design and Implementation
	4.1 Design
	4.2 Integration into Contiki
	4.3 Implementation

	5 Extending BLEach
	5.1 Adaptive Radio Duty Cycling
	5.2 Traffic Prioritization and Multiplexing
	5.3 Indirect Link-quality Monitoring

	6 Evaluation
	6.1 Model Validation
	6.2 Evaluating Minimal BLEach
	6.3 Evaluating Extended BLEach
	6.4 Comparison with IPv6 over IEEE 802.15.4

	7 Related work
	8 Conclusions
	References

