
End-to-end Real-time Guarantees
in Wireless Cyber-physical Systems

Romain Jacob∗ Marco Zimmerling† Pengcheng Huang∗ Jan Beutel∗ Lothar Thiele∗
∗Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland

†Networked Embedded Systems Group, TU Dresden, Germany
firstname.lastname@tik.ee.ethz.ch marco.zimmerling@tu-dresden.de

Abstract—In cyber-physical systems (CPS), the communication
among the sensing, actuating, and computing elements is often
subject to hard real-time constraints. Real-time communication
among wireless network interfaces and real-time scheduling for
complex, dynamic applications have been intensively studied.
Despite these major efforts, there is still a significant gap to fill.
In particular, the integration of several real-time components to
provide end-to-end real-time guarantees between interfaces of dis-
tributed applications in wireless CPS is an unsolved problem. We
thus present a distributed protocol that considers the complete
transmission chain including peripheral busses, memory accesses,
networking interfaces, and the wireless real-time protocol. Our
protocol provably guarantees that message buffers along this
chain do not overflow and that all messages received at the
destination application interface meet their end-to-end deadlines.
To achieve this while being adaptive to unpredictable changes in
the system and the real-time traffic requirements, our protocol
establishes at run-time a set of contracts among all major
elements of the transmission chain based on a worst-case delay
and buffer analysis of the overall system. Using simulations, we
validate that our analytic bounds are both safe and tight.

I. INTRODUCTION

Cyber-physical systems (CPS) tightly integrate components
for sensing, actuating, and computing into distributed feedback
loops to directly control physical processes [1]. The successful
deployment of CPS technology is widely recognized as a grand
challenge to solving a number of societal problems in domains
ranging from healthcare to industrial automation. To reach into
new areas and realize systems with unprecedented capabilities,
there is a trend toward increasingly smaller and autonomously
powered CPS devices that exchange data through a low-power
wireless communication substrate. As many CPS applications
are mission-critical and physical processes evolve as a function
of time, the communication among the sensing, actuating, and
computing elements is often subject to real-time requirements,
for example, to guarantee stability of the feedback loops [2].

Challenges. These real-time requirements are often specified
from an end-to-end application perspective. For example, a
control engineer may require that sensor readings taken at time
ts are available for computing the control law at ts +D. Here,
the relative deadline D is derived from the activation times
of application tasks, namely the sensing and control tasks,
which are typically executed on physically distributed devices.
Meeting such end-to-end deadlines is non-trivial, because
data transfer between application tasks involves multiple other

tasks (e.g., operating system, networking protocols) and shared
resources (e.g., memories, system busses, wireless medium).

The problem of real-time communication between network
interfaces of sources and destinations in a low-power wireless
network has been studied for more than a decade [3]–[5]. To-
day, standards such as WirelessHART [6] and ISA100.11a [7]
for control applications in the process industries exist [8],
and considerable progress in real-time transmission scheduling
and end-to-end delay analysis for WirelessHART networks
has been made [9], [10]. Despite these efforts, the problem
of integrating a wireless real-time protocol, such as Wire-
lessHART [6] or Blink [11], with the rest of the system to
provide end-to-end real-time guarantees between distributed
application interfaces remains unsolved. To fill this gap, we
argue that the entire transmission chain involving peripheral
busses, memory accesses, networking interfaces, and the wire-
less networking protocol must be taken into account.

To support a broad spectrum of CPS applications, a solution
to the problem should provide the following properties
P1 Messages received by the destination application interface

do so before their hard end-to-end deadlines.
P2 Messages received at the wireless network interface are

successfully delivered to their destination application in-
terface (i.e., local buffer overflows are prevented).

P3 At runtime, the solution adapts to dynamic changes in
the system state and the real-time traffic requirements.

P4 Existing hardware and software components can be freely
composed to satisfy specific application’s needs, without
altering the properties of the integrated parts.

P5 The solution scales to large system sizes and operates
efficiently with regard to limited resources such as energy,
wireless bandwidth, computing capacity, and memory.

A major challenge in providing these properties is to funnel
messages in real-time through tasks that run concurrently and
access shared resources. Interference on such resources can
delay tasks and communication arbitrarily, therefore hamper-
ing timing predictability (P1–P3) and composability (P4).

To avoid interference on the wireless medium, real-time
protocols like WirelessHART [6] typically use a time divi-
sion multiple access (TDMA) scheme, whereby a centralized
scheduler allocates exclusive time slots to nodes for message
transmissions. One way of integrating the wireless protocol
with the rest of the system while avoiding interference would
be to jointly schedule transmissions in the network and all



other tasks in the system. Although such a completely time-
triggered approach may be suitable for some wired embedded
systems [12], it is hardly practical in a dynamic wireless
setting, where tasks are often triggered by external events
and the system must adapt to changes in environmental
conditions [13], traffic and computing demands, available
energy [14], and node failures and recoveries [15] (P3, P5).

Contribution. This paper proposes an approach to integrate
a wireless real-time communication protocol into CPS. By
considering the whole transmission chain, we define con-
straints on application schedules such that end-to-end real-time
guarantees between application interfaces can be enforced. Our
solution supports properties P1–P5 by acting on two levels.

On the device level, we propose to dedicate a communica-
tion processor (CP ) exclusively to the real-time network
protocol and to execute all other tasks on an application
processor (AP ). We leverage the Bolt interconnect [16],
which decouples two processors in the time, power, and
clock domains, while allowing them to asynchronously
exchange messages within predictable time bounds. Thus,
on each device, we decouple communication from appli-
cation tasks, which can be independently invoked in an
event- or time-triggered fashion. As a result, we guarantee
the faithfulness of the network interface (P2), we support
composability (P4), and we leverage the recent trend
toward ultra low-power multi-processor architectures that
can be chosen to match the needs of the application and
the networking protocol efficiently (P5).

On the system level, we design a distributed real-time pro-
tocol (DRP) that provably guarantees that all messages
received at the application interfaces meet their end-to-
end deadlines (P1) and all message buffers along the
transmission chain do not overflow (P2). To accomplish
this while being adaptive to unpredictable changes (P3),
DRP dynamically establishes at run-time a set of con-
tracts depending on the current real-time traffic demands
in the system. A contract determines the mutual obli-
gations between a source or destination device and the
networking protocol, both in terms of minimum service
provided and maximum demand generated. In this way,
we guarantee end-to-end deadlines without impairing the
decoupling of communication from application tasks.

After discussing related work in Sec. II and stating the prob-
lem in Sec. III, we describe our design throughout Secs. IV
and V. In Sec. VI, we describe how to practically implement
the design concepts of DRP. It requires an analysis of worst-
case end-to-end communication delay and message buffer
sizes, which we perform using classical analysis techniques
for distributed real-time systems [17], [18]. Sec. VII explores
the impact of the protocol’s design parameters on the system
performance and the corresponding theoretical limits. Finally,
based on real performance numbers of Bolt [16] and param-
eters of the Blink wireless real-time communication protocol
reported in the literature [11], [19], [20], we simulate DRP.
The results, discussed in Sec. VIII, show that our analytical

bounds are safe and have a low degree of pessimism: in some
cases the simulation results are within 4 % of the analytical
worst-case bounds. The Appendix provides details on the
worst-case delay analysis.

II. RELATED WORK

Providing end-to-end guarantees in distributed networked
systems has a long history in the context of the Internet.
Notable developments are the resource reservation protocol
(RSVP) that combines flow specification, resource reservation,
admission control, and packet scheduling to achieve end-to-
end quality of service (QoS) [21]. Network calculus [17]
provides some of the necessary theoretical concepts to de-
termine bounds on buffer sizes and delay in communication
networks. Extension toward hard real-time computing and
communication systems is known as real-time calculus [18].
The analysis of distributed hard real-time systems also has
a long history [22], and so do compositional analysis frame-
works, such as MAST [23], SymTA/S [24] and MPA [25].

Early works on real-time communication in sensor networks
consider classical non-deterministic routing protocols [3]–[5],
thus providing only soft guarantees. Stankovic et al. [4] even
argue that specific message delivery orderings, such as those
useful to apply established dependability techniques [15], are
impossible to guarantee in a multi-hop low-power wireless
network. More recently, standards like WirelessHART [6] have
been analyzed to provide communication guarantees [9], [10].
But [9] is based on NP-hard multiprocessor scheduling and
requires a global network view, which limits its adaptability to
dynamic changes in the system [26]. Other wireless real-time
protocols have been described recently [8], [27]. However, the
integration of these protocols into a methodology to provide
end-to-end real-time guarantees between application interfaces
is unsolved. We address this problem in this paper.

Recently, a game-changing approach to wireless multi-hop
communication using synchronous transmissions has been de-
scribed [11], [19], [20]. It avoids the computation of multi-hop
routing paths and per-node communication schedules based
on, for example, neighbor lists and link qualities, because
the protocol logic is independent of such volatile network
state. Experiments on several large-scale testbeds show that the
approach is highly adaptive and achieves an end-to-end packet
reliability higher than 99.9 % [19], [20]. Furthermore, the few
packet losses can be considered statistically independent [28],
which eases the design of CPS controllers that can deal with
intermittent observations [29]. Although our approach can be
adapted to other types of communication protocols, the paper
is based on this concept of synchronous transmissions.

III. SYSTEM MODEL AND PROBLEM STATEMENT

The problem we aim to solve in this paper is a function of
the application requirements and the system architecture.
Application requirements. CPS use feedback loops to control
physical processes [2]. Because physical processes evolve over
time, their timing must be intimately connected to the timing
in the cyber domain of computing and communication. For this



(a) A set of nodes N , each with a
single processor, execute the appli-
cation and exchange messages via
wireless multi-hop communication.

BLINK Wireless
Real-Time Protocol

CP

BOLT

AP

CP

BOLT

AP

CP

BOLT

AP

…

Network Manager

Distributed Real-time Protocol

(b) Application (AP ) and commu-
nication (CP ) processors exchange
messages via Bolt; the CPs run the
Blink real-time wireless protocol.

Figure 1. Traditional (a) and our proposed (b) system architecture. A logically
global network manager arbitrates access to the shared wireless medium.

reason, the exchange of sensor data and control signals among
distributed CPS devices is subject to real-time constraints.

Let F be the set of real-time message flows in the system.
Each flow Fi = (ns

i ,n
d
i , Ti , Ji,Di) is defined by a source

application running on source node ns
i that releases messages

with a minimum message interval Ti and jitter Ji (Ji < Ti ),
such that the time span of n successive messages is never
smaller than (n− 1)Ti − Ji for any n. Thus, message release
is sporadic with jitter. Every message released at nsi should
be delivered to the application running on destination node nd

i

within the same relative end-to-end deadline Di .
System architecture. Fig. 1(a) shows the overall system archi-
tecture. It consists of a set of nodes N that exchange messages
via wireless multi-hop communication; that is, messages sent
from a source node to a destination node are possibly relayed
by multiple other nodes. A logically global network manager
arbitrates access to the shared networking resource. Physically,
the network manager may run on one of the nodes. The source
and destination applications of a flow Fi run on physically
distributed nodes ns

i and nd
i . A node can send and receive

messages to and from several other nodes in the system.
Problem statement. The problem is to design a protocol
that supports properties P1–P5 such that every message of
every flow Fi ∈ F released at the source node ns

i , given its
successful transmission by the wireless network, is delivered to
the destination application on node nd

i within Di time units.

IV. DESIGN OVERVIEW

We present a solution to the above problem. Before delving
into the details of our design, we provide in this section a
high-level overview of the principles underlying our solution.
Conceptually, our design is based on three building blocks:

1) a decoupling of (wireless multi-hop) communication from
application using a Bolt-based dual-processor architec-
ture [16] to avoid interference at the device level;

2) a wireless real-time protocol that delivers a high fraction
of messages from source to destination network interfaces
within a given network deadline D;

3) a distributed real-time protocol that manages resources
across the network, decouples responsibilities between
components, and ensures that end-to-end deadlines D
between application interfaces are met.

We now motivate the use of each of these building blocks
and explain how they support achieving properties P1–P5.

Dual-processor architecture. When using the traditional sys-
tem architecture shown in Fig. 1(a), application and communi-
cation tasks execute concurrently on a node. When both tasks
attempt to simultaneously access shared resources (e.g., mem-
ory, processor, system bus), one of them will be delayed for an
arbitrary amount of time. Such resource interference hampers
end-to-end timing predictability, and may alter the functional
properties of a task, thus defeating system composability.

To tackle this issue, we use the system architecture shown
in Fig. 1(b), where each node is replaced with a dual-processor
platform. One processor (AP ) runs the application, while the
other processor (CP ) only runs the wireless multi-hop commu-
nication protocol. Using the Bolt processor interconnect [16],
AP and CP are decoupled in time, power, and clock domains,
and can asynchronously exchange messages with bounded
delay. As a result, this building block helps toward end-to-end
timing predictability (P1) and allows for composing processors
and software components to satisfy the application demands
(P4), which also aids in achieving low-power operation (P5).

Wireless real-time protocol. As discussed in Sec. II, provid-
ing real-time guarantees across multi-hop low-power wireless
networks is challenging. Out of the many solutions that have
been proposed, Blink [11] is one of the few wireless real-
time protocol satisfying our needs. Specifically, Blink delivers
messages within real-time deadlines (P1), reliably (P2), and at
low energy costs (P5) between the CPs (i.e., the network in-
terfaces, see Fig. 1(b)), while being highly adaptive to dynamic
changes in the wireless network and the traffic demands (P3).
We use Blink to illustrate how our approach materializes in a
concrete solution. Nevertheless, the underlying principles we
present could be adapted to other wireless real-time protocols.

Distributed real-time protocol. Using Bolt, we decouple the
Blink wireless real-time protocol running on the CPs from the
application running on the APs. This decoupling has many
benefits, including the flexibility in how each of the two oper-
ates (i.e., time- vs. event-triggered), but it also poses a major
challenge: while AP and CP should execute independently, it
is their joint operation that determines whether or not messages
exchanged between two APs (i.e., application interfaces) meet
their end-to-end deadlines.

To address this challenge, we introduce a distributed real-
time protocol (DRP) as the third building block of our solution.
DRP strikes a balance between the decoupling of APs, CPs,
and Blink on the one hand and (predictable) end-to-end latency
of messages between application interfaces (i.e., the APs)
on the other hand. To realize this trade-off, DRP entails the
notion of contract. A contract settles the minimum required
agreement between APs, CPs, and Blink so that they can
operate as much as possible independently from each other,
thus preserving P4, while ensuring that end-to-end deadlines
D are met (P1, P2). DRP establishes contracts at runtime as
new flows are requested and existing ones are removed (P3),
and scales well to large sets of real-time message flows (P5).



Figure 2. Example of a custom-built heterogeneous dual-processor platform.
Bolt interconnects a powerful application processor (TI MSP432) on the left
with a state-of-the-art communication processor (TI CC430) on the right.

Figure 3. Conceptual view of the Bolt processor interconnect. Using functions
write, read, and flush, the application (AP ) and communication (CP )
processors can asynchronously exchange messages with predictable latency.

V. DETAILED DESIGN

We now detail the three building blocks of our solution.
We first describe how APs and CPs exchange messages
through Bolt, then the operation of the Blink wireless real-
time protocol, and finally the detailed design of DRP.

A. Bolt Processor Interconnect

Bolt provides predictable asynchronous message passing
between two arbitrary processors, and hence decouples the
processors with respect to time, power, and clock do-
mains [16]. Fig. 2 shows an example dual-processor platform
with Bolt in the middle. The processor on the left is a
TI MSP432, which features a powerful ARM Cortex-M4
microcontroller suitable for application processing (AP ); the
processor on the right is a TI CC430, which has a low-
power wireless radio that is driven by a wireless multi-hop
communication protocol (CP ).

As illustrated in Fig. 3, two message queues with first-
in-first-out (FIFO) semantics, one for each direction, form
the core of Bolt. Bolt allows for concurrent read and write
operations by AP and CP on both queues.

Application programming interface (API). The API of Bolt
includes three functions, as listed in Table I. Function write

appends a message to the end of the outgoing queue, whereas
read reads and removes the first message from the incoming
queue. Calling flush results in a sequence of read operations
with the goal of emptying the incoming message queue.

The implementation of flush is peculiar. As Bolt allows
for concurrent read and write operations, in theory, a flush
may result in an infinite sequence of read operations. To
prevent this, the number of read during a flush is upper-

Table I
BOLT APPLICATION PROGRAMMING INTERFACE (API)

Function Description WCET
write Append a message to outgoing queue Cw

read
Read and remove the first message
from incoming queue Cr

flush
Perform up to fmax read operations,
or until incoming queue is empty Cf = fmax ∗ Cr

Figure 4. Operation in Blink is globally time-triggered. Communication
occurs in rounds of equal duration Cnet . Each round consists of a sequence
of up to M exclusive time slots, each of which serves to send one message.
The interval between the start of consecutive rounds Tnet may vary. During
a round, all CPs in the system participate in the communication.

bounded by fmax. We set fmax to the number of messages
that fit into one Bolt queue, denoted by SBolt,

fmax = SBolt (1)

Thus, a flush terminates either when the incoming queue is
found empty or when fmax messages have been read out.

Due to its design, Bolt features predictable execution times
for all three functions, regardless of the interconnected pro-
cessors [16]. We denote by Cw, Cr, and Cf the worst-case
execution times (WCETs) of write, read, and flush.

B. Blink Wireless Real-time Protocol

In Blink [11], wireless multi-hop communication is globally
time-triggered and occurs in rounds of equal duration Cnet .
Fig. 4 shows that each round serves to send up to M messages
within exclusive time slots. In each time slot a message is
sent from a given CP to all other CPs with a reliability
above 99.9 % [19]. The interval between the start of consec-
utive rounds, denoted by Tnet , is determined by the network
manager at runtime and is based on the current real-time
traffic demands. Tmin

net and Tmax
net are implementation-specific

bounds on Tnet . During a round, all CPs in the system
are busy executing Blink, so other tasks (e.g., exchanging
messages through Bolt) can only be executed between rounds.
In addition to computing the communication schedule for each
round, the network manager also checks whether a request for
a new flow can be admitted using a schedulability test.

In principle, Blink expects periodic message arrivals with
known initial phase of the first packet. We refer to this as the
expected arrival pattern. Blink guarantees that for all messages
matching the expected arrival pattern, if one is successfully
received at the destination CP , it is available before its relative
network deadline D. Because the CPs are busy executing
Blink during rounds, the network deadline must be bigger than
the round interval (i.e., D ≥ Tnet ≥ Tmin

net ).
In our case, however, APs and CPs operate independently

and the actual message release from the APs is sporadic with



jitter, as described in Sec. III. To resolve this mismatch, we
let the network manager assume that messages are released
periodically at Blink’s interface, choose arbitrarily the initial
phase of flows, and compute Blink’s communication schedule
based on that expected arrival. The analysis of the system (see
Sec. VI) bounds the maximal mismatch between the actual and
expected arrival patterns. Our design of DRP uses that bound
to guarantee that end-to-end deadlines Di are met nonetheless.

C. DRP: Distributed Real-time Protocol

Contracts. DRP aims at providing end-to-end real-time guar-
antees between distributed application interfaces. Blink al-
ready provides real-time guarantees between the network in-
terfaces (i.e., CPs). In addition, DRP dynamically establishes
contracts at runtime that satisfy properties P1 and P2 by

1) avoiding overflows of message buffers (e.g., the Bolt
queues) at the source and destination nodes, thus pre-
venting message losses (P2);

2) ensuring that messages are handled “fast enough” bet-
ween the network (i.e., CPs) and the application (i.e.,
APs) interfaces, at the source and destination nodes, such
that they all meet their end-to-end deadlines (P1).

To avoid overflows 1), DRP defines maximum time intervals
between two flush of Bolt by the CPs and APs, denoted by
T s
f and T d

f respectively. We statically set T s
f for all CPs so

that it does not constrain the achievable end-to-end deadline.
On the other hand, DRP dynamically adjusts T d

f for each AP
in the system upon registration of a new flow.

Meeting end-to-end guarantees 2) entails that DRP decides
on the distribution of responsibilities among the source node,
Blink, and the destination node of a flow Fi with regard to
meeting the end-to-end deadline Di . To this end, DRP uses
the deadline ratio r ∈ (0, 1), a configuration parameter chosen
at design time. The joint responsibility of the source and Blink
is a function of the source flushing interval T s

f and the flow’s
network deadline Di , which is computed by DRP. They are
responsible for meeting a fraction r of the end-to-end deadline

f(T s
f , Di) ≤ r ∗Di (2)

The remaining part of the end-to-end deadline defines the
responsibility of the destination, which is a function of its
flushing interval T d

f

g(T d
f ) ≤ (1− r) ∗Di (3)

In Sec. VI, we derive concrete expressions for functions f and
g, and we specify how DRP computes Di and T d

f . In Sec. VII
we detail how the choice of the deadline ratio r influences key
performance metrics of wireless CPS application.

Overall, DRP dynamically establishes two contracts for each
newly admitted flow Fi = (ns

i ,n
d
i , Ti , Ji,Di) ∈ F

• Source ↔ Blink: Fi’s source application, which runs
on APs at node ns

i , agrees to write no more messages
than specified by the minimum message interval Ti and
the jitter Ji. The attached CPs prevents overflows of Bolt
and its local message buffer. In turn, Blink agrees to serve

flow Fi such that any message matching the expected
arrival of Fi meets the network deadline Di (if received).

• Blink ↔ Destination: Blink agrees to deliver no more
messages than specified by Ti . In turn, APd and CPd

agree to read out all delivered messages such that over-
flows of Bolt and CPd ’s local buffer are prevented and
all messages meet Fi’s end-to-end deadline Di .

For any flow, if both contracts are fulfilled, all messages that
are successfully delivered by Blink will meet their end-to-end
deadline. In practice, the contracts fulfillment is guaranteed
by a set of admission tests, which are performed in sequence
upon registration of a new flow, as described next.
Flow registration. Fig. 5 shows the full procedure for reg-
istering a new flow Fi = (ns

i ,n
d
i , Ti , Ji,Di) in DRP. The

flow’s source application running on APs first computes the
network deadline Di (see how in the next Sec.) before it
writes the request to the attached CPs through Bolt. CPs

uses its admission test to check whether it could still prevent
overflows of Bolt and its local memory if Fi were present. If
so, CPs forwards the request to the network manager, which
checks the schedulability using Blink’s admission test [11].
In case Blink admits the flow, the destination node’s CPd and
APd check whether they can prevent overflows of CPd ’s local
memory and Bolt, respectively. Moreover, APd re-computes
its required flushing interval T d

f and checks using mainstream
schedulability analysis [30] whether it can support this new
load (in addition to the load incurred by other tasks running
on APd ). DRP registers a flow only if all admission tests
succeed, which triggers changes in the runtime operation (i.e.,
schedule) of APs , Blink, and APd .

Flow requests and acknowledgments are sent through spe-
cific flows, registered at system bootstrapping.

VI. CONCRETE REALIZATION OF DRP

To implement DRP, one needs to define the fixed flushing
interval T s

f of the CPs (Sec. VI-A), and how to dynamically
compute the network deadline Di of a flow Fi and the flushing
interval T d

f of each AP (Sec. VI-B). Then, a worst-case buffer
analysis (Sec. VI-C) will allow to formulate admission tests
(Sec. VI-D), one for APs and one for CPs. The success of
all admission tests guarantees that both contracts Source ↔
Blink and Blink ↔ Destination can be satisfied by DRP.

Fig. 6 summarizes the various inputs and outputs of DRP.
Hardware parameters (related to Bolt) and design parameters
(i.e., the length of a communication round Cnet , the deadline
ratio r, and the number of slots per round M ) are constants
known to all components. The application’s real-time commu-
nication requirements may change at runtime as new flows are
requested and existing flows are removed. DRP determines T s

f

statically, while all other outputs are dynamically computed
whenever the set of flows changes, according to the procedure
illustrated in Fig. 5.

A. Setting CPs’ Flushing Interval

To guarantee that all CPs fulfill their share of the contracts
(i.e., prevent buffer overflows), we conceive a time-triggered



Figure 5. Steps and components involved when registering a new flow in DRP. Given a request for a new flow Fi = (ns
i ,n

d
i , Ti , Ji,Di ), the source

application running on APs at node ns
i computes the flow’s network deadline Di . Then, all components check one after the other using specific admission

tests whether they can admit the new flow. DRP registers a new flow only if all admission tests succeed, which eventually triggers changes in the runtime
operation (i.e., schedule) of Blink as well as of the source and destination application processors APs and APd .

Figure 6. Inputs and outputs of DRP. Hardware and design parameters
are fixed at design time, while the application requirements may change
at runtime. DRP statically computes the flushing interval of CPs; all other
outputs are dynamically computed whenever the flow set F changes.

approach to schedule all tasks of CPs. It consists of (i) setting
the flushing interval T s

f of all CPs to the same constant value,
and (ii) letting the round interval Tnet be a multiple of T s

f . As
motivated in Sec. V, we would like T s

f not to constrain the
achievable deadline, so we intend to set it as short as possible.
To do so, recall the three tasks every CP needs to perform
• flushing Bolt before each communication round,
• participating in the communication during the rounds,
• writing all received messages into Bolt after the rounds.

Performing those tasks altogether takes CCP + Cnet time
units, where CCP = Cf + M ∗ Cw, and M denotes the
number of time slots in one round. Hence, CCP + Cnet is
the smallest admissible round interval (otherwise CPs’ task
set is not schedulable). Thus we set for all CPs in the system,

T s
f = CCP + Cnet (4)

and we let the round interval be a multiple of T s
f . In other

words, for k ∈ N, k > 0,

Tnet = k ∗ T s
f (5)

For a given Cnet, a larger k entails less available bandwidth
but also lower energy consumption. Blink dynamically adjusts
k to match the bandwidth requirements and save energy.

B. Computing Network Deadlines & APs’ Flushing Interval

Having fixed CPs’ flushing interval, we now turn to the
problem of dynamically computing the network deadline Di

of flow Fi and the flushing interval T d
f of Fi’s destination

APd such that the end-to-end deadline Di is met. To this
end, we need to define expressions for the functions f and g
(introduced in Sec. V), and deduce values for Di and T d

f such
that equations (2) and (3) are satisfied.

Theorem 1. For any flow Fi = (ns
i ,nd

i ,Ti ,Ji,Di ), and given
the duration of communication rounds Cnet, functions f and
g are upper-bounded as follows

f(T s
f , Di) ≤ Ti +Di + Ji + δconstf (6)

g(T d
f ) ≤ T d

f (nd
i ) + δconstg (7)

where δconstf and δconstf are constant delays that depend on
the WCETs of the Bolt API functions, on the maximum number
of messages M that can be served by Blink in one round, and
on the fixed flushing interval T s

f of CPs,

δconstf = Cw + Cf + T s
f (8)

δconstg = M ∗ Cw − (M − 1) ∗ Cr + Cf (9)

Ji =
⌊
(Ji + Cf − Cr)/T s

f

⌋
· T s

f (10)

Proof. Function f is the time between when a message is
written into Bolt by the source APs and when the communi-
cation round in which the message is sent by Blink ends (i.e.,
when the message is available at the destination CPd ). This is
the sum of two delays: δsource, the time until the message is
available for communication at the source CPs ; and δnetwork,
the time until the message is shipped over the network to CPd .

Similarly, function g is the time between when a packet is
available at the destination CPd and the end of the flush

operation that reads the message out of Bolt at the destina-
tion APd (i.e., when the message can be processed by the
destination application). We refer to this delay as δdest.

Hence, the expressions for functions f and g in (6) and (7)
directly follow from the delays expression given in Lemmas 4,
5, and 6, which are presented and proven in the Appendix.



We use Theorem 1 to express conditions on Di and T d
f such

that (2) and (3) are satisfied. In particular, it is sufficient that
for any flow Fi = (ns

i ,n
d
i , Ti , Ji,Di) ∈ F

Ti +Di + Ji ≤ r ∗Di − δconstf (11)

T d
f (nd

i ) ≤ (1− r) ∗Di − δconstg (12)

Furthermore, due to the limited bandwidth of low-power
wireless networks, it makes sense to choose the network dead-
line Di as large as possible, thus helping the schedulability
of flows in the network. However, Blink does not support
network deadlines larger than Ti [11] nor smaller than Tmin

net

(see Sec. V-B). Hence, for any flow Fi, it must hold that

Tmin
net ≤ Di ≤ Ti (13)

Finally, to satisfy all contracts in the system, (11), (12) and
(13) must hold for all flows Fi ∈ F . Hence, the values for Di

and T d
f computed dynamically at runtime must satisfy for any

flow Fi = (ns
i ,n

d
i , Ti , Ji,Di) ∈ F and any n ∈ N

Di = min
(
Ti , r ∗Di − δconstf − Ti − Ji

)
(14)

T d
f (n) ≤ min

Fj∈F,n=nd
j

(
(1− r) ∗Dj − δconstg

)
(15)

If using (14) leads to a violation of the constraint in (13) or
if T d

f results in a load that AP at node n cannot handle, DRP
rejects the flow since the two contracts cannot be guaranteed.

C. Worst-case Buffer Analysis

Satisfying all contracts also entails preventing overflows of
message buffers in the system. Specifically, as shown in Fig. 5,
• APs are responsible for ensuring that the incoming Bolt

queues do not overflow, and
• CPs are responsible for ensuring that their local message

buffers and the outgoing Bolt queues do not overflow.
To formulate the admission tests for APs and CPs, we

first need the worst-case buffer sizes (i.e., maximum number
of messages in a buffer) induced by a given flow set F . For
ease of exposition, we make the following hypothesis.
Hypothesis 1. For a given flow set F , an AP (or CP ) never
writes more messages into Bolt than can be flushed by CP (or
AP ) in one flush operation in the time span between two
flush.

This hypothesis implies that the Bolt queues are always
empty at the end of a flush operation. We prove at the end
of this section that our admission tests effectively guarantee
that Hypothesis 1 always holds.

Lemma 1. Given a flow set F , the buffer size of the outgoing
Bolt queue of node n ∈ N , BBolt,out(n), is upper-bounded,

BBolt,out(n) ≤
∑

Fi∈F, n=ns
i

⌈
T s
f + Cw + Cr + Ji

Ti

⌉
(16)

Proof. According to the Source ↔ Blink contract, APs at
node n does not write more than one message every Ti with
jitter Ji into the outgoing Bolt queue. Based on Hypothesis 1,
the buffer size is bounded by the number of messages that

can be written by APs during the maximum time a message
can stay inside the queue, which is ∆ = T s

f + Cw + Cr (see
Fig. 9). The maximum number of messages that can be written
by APs within any time interval ∆ is d(∆ + Ji)/Tie for each
flow Fi sourced by n, which concludes the proof.

The worst-case buffer size of a CP depends on (i) the
maximum time a message can stay in CP ’s local memory
awaiting to be served by Blink, and (ii) the number of
messages that can be sent within one round to a node.

Lemma 2. Given a flow set F , the buffer size of CP ’s internal
memory of node n ∈ N , BCP (n), is upper-bounded,

BCP (n) ≤
∑

Fi∈F,
n=ns

i

1 +

⌈
Di + Ji + Cf

Ti

⌉
+
∑

Fi∈F,

n=nd
i

1 (17)

Proof. On the source side, we make the conservative assump-
tion that all messages read out during a flush occupy memory
in CPs from the beginning of the flush. Hence, the maximum
waiting time in CPs for a message until it is served by Blink
is δnetwork +Cf (see Lemma 5 in the Appendix). The number
of messages in CPs due to the source is upper-bounded by
the maximum number of messages APs can write during this
time interval, given by dδnetwork + Cf )/Tie. Using Lemma 5,
this leads to at most 1 +

⌈
(Di + Ji + Cf )/Ti

⌉
per outgoing

flow.
One the destination side, during a round, CPd may receive

several messages, which it immediately writes into Bolt after
the round. However, Blink expects one packet every Ti from
each flow, which it serves within Di . As Di ≤ Ti , Blink
never schedules more than one packet per round for each flow.
Thus, the maximum number of messages in CPd due to the
destination is 1 packet per incoming flow.

Lemma 3. Given a flow set F , the buffer size of the incoming
Bolt queue of node n ∈ N , BBolt,in(n), is upper-bounded,

BBolt,in(n) ≤
∑

Fi∈F,

n=nd
i

⌈
T d
f (n) + Cw + Cr +Di

Ti

⌉
(18)

Proof. As specified in the Source ↔ Blink contract, Blink
delivers packets from any flow Fi before the network deadline
Di (see Sec. V). Therefore, Blink delivers at most one packet
every Ti time units, with a jitter equal to Di , which are written
into Bolt immediately after the round.

Based on Hypothesis 1, the buffer constraint of the incoming
Bolt queue is bounded by the number of packets that can be
written by CPd during the maximum elapsed time before a
packet is read out by APd . As in the proof of Lemma 1, there
are at most

⌈
(T d

f (n) + Cw + Cr +Di)/Ti

⌉
such messages

from each flow Fi that has node n as destination.

D. Admission Tests

One can now combine the above results and formulate the
admission tests for CPs and APs, which are the corner stone
of DRP’s registration mechanism described in Sec. V-C. We



further show that the computation complexity of the admission
tests is not only small but constant, and hence supports the
desired properties of adaptability (P3) and scalability (P5).

Let Fj be the flow for which a request has been issued,
and Fnew = F ∪ {Fj}. The CP of node n is responsible for
preventing overflows of its local memory (of size SCP ) and
of the outgoing Bolt queue of node n (of size SBolt).

Theorem 2 (Admission Test of CP ). If

SBolt ≥
∑

Fi∈Fnew,
n=ns

i

⌈
T s
f + Cw + Cr + Ji

Ti

⌉
and

SCP ≥
∑

Fi∈Fnew,
n=ns

i

1 +

⌈
Di + Ji + Cf

Ti

⌉
+

∑
Fi∈Fnew,

n=nd
i

1

then the requested flow Fj can be safely admitted by CP .

Proof. Immediate from Lemmas 1 and 2.

The AP of node n is responsible for preventing overflows
of the incoming Bolt queue of node n (of size SBolt) and for
guaranteeing its share of the end-to-end deadline.

Theorem 3 (Admission Test of AP ). If there exists T d
f (n)

such that

T d
f (n) ≤ min

Fi∈Fnew,

n=nd
i

(
(1− r) ∗Di − δconstg

)
and

SBolt ≥
∑

Fi∈Fnew,

n=nd
i

⌈
T d
f (n) + Cw + Cr +Di

Ti

⌉

then the requested flow Fj can be safely admitted by AP .

Proof. Immediate from Lemma 3 and equation (15).

Finally, we verify that Hypothesis 1 holds, showing the va-
lidity of our buffer analysis. From (1) we have fmax = SBolt.
Thus, by performing the admission tests at runtime, it follows
from Theorems 2 and 3 and Lemmas 1 and 3 that fmax is
always bigger than the filling level of any Bolt queue, which
entails Hypothesis 1 is true.

VII. EFFECT OF DESIGN PARAMETERS ON PERFORMANCE

The previous section presented admission tests for AP and
CP that ensure all contracts are satisfied after the admission
of a new flow for given design parameters: the duration of a
round in Blink Cnet and the deadline ratio r. In this section,
we analyze the influence of these parameters on the achievable
performance of DRP (i.e., responsiveness and bandwidth).

A. Responsiveness: Minimal Admissible End-to-end Deadline

Let us assume that the duration of communication rounds
Cnet is given. DRP handles messages between application
interfaces (i.e., the APs) and constrains the destination APd

to flush Bolt (at least) every T d
f . Naturally, there exists a

lower bound on the admissible T d
f ; let us refer to this bound

as T d
f,min. Given these parameters, we are interested in the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Deadline ratio parameter r

0

10

20

30

40

50

Smallest admissible
end-to-end deadline

0.97

End-to-end deadline D [s]

Admissible region
(20) : Source constraint

(19) : Destination constraint

5.46s

Figure 7. Finding the smallest admissible end-to-end deadline Dmin for
Cnet = 1 sec and T d

f,min = 0.1 sec. (19) and (20) each define a feasible
region for (r,D) tuples. The intersection defines the admissible region.

minimal admissible end-to-end deadline Dmin, or in other
words, the maximal responsiveness of the protocol.

From the previous remark on T d
f and eq. (15) it follows

T d
f,min ≤ T d

f ≤
(
(1− r) ∗D − δconstg

)
⇒ D ≥

T d
f,min + δconstg

(1− r)
(19)

From (11) we also have

T +D + J ≤ r ∗D − δconstf

⇒ D ≥
T +D + J + δconstf

r

We look for the minimal expression of the right-hand side
term. (13) : Tmin

net ≤ Di ≤ Ti yields Tmin = Dmin = Tmin
net .

Moreover, combining (4) and (5) entails Tmin
net = T s

f = Cnet+
CCP . Hence Tmin is fixed given Cnet. Finally, in the best case,
there is no (or small) jitter (i.e., J = 0), and we obtain

⇒ D ≥
2Tmin + δconstf

r
(20)

(19) and (20) define two lower bounds on the minimal ad-
missible end-to-end deadline Dmin induced by the contracts.
Combining them, it follows that

Dmin = min
r

(
T d
f,min + δconstg

(1− r)
,

2Tmin + δconstf

r

)
The minimal value Dmin is reached for ropt = (2Tmin +
δconstf )/(T d

f,min + δconstg + 2Tmin + δconstf ) and it yields

Dmin = T d
f,min + 2Tmin + δconstf + δconstg (21)

Using the parameters in Table II from real-world prototypes,
if Cnet = 1 sec and T d

f,min = 0.1 sec, the minimal end-to-
end deadline that can be supported is Dmin = 5.46 sec, with
r = ropt = 0.97, and the minimum message interval T =
Tmin = 1.074 sec. This case is illustrated in Fig. 7.

B. Bandwidth: Maximal Duration of Communication Rounds

Conversely, let us now assume that the minimal end-to-
end deadline to be supported is given by D, and consider the
same assumption on T d

f . The maximal bandwidth achievable
by Blink is M/Tmin

net packet/ sec. The round length Cnet is
a linear function of the number of packets per round M
(i.e., a constant time per packet plus some overhead), and



(5) : Tmin
net = Cnet + CCP . Hence, the maximal bandwidth

actually grows with Cnet. Thus, we now investigate the
maximal admissible duration of communication rounds Cnet

that yields the maximum available network bandwidth.
From (11) we have T + D + J ≤ r ∗ D − δconstf , and,

as previously, Tmin
net = Cnet + CCP ≤ D ≤ T . We get

Cnet ≤
1

2
(r ∗D − δconstf )− CCP (22)

From (19), given D and T d
f,min, the maximal admissible value

for r is rmax = 1− (T d
f,min + δconstg )/D , and finally

⇒ Cnet ≤
1

2

(
D − δconstf − δconstg − T d

f,min

)
− CCP (23)

Using the parameters from Table II, if we need to satisfy
end-to-end deadlines of D = 10 sec and T d

f,min = 3 sec,
the maximal round length that can be supported is Cnet =
2.82 sec, with r = rmax = 0.69, and the minimum message
interval T = Cnet + CCP = 2.89 sec. That upper-bound also
yields the maximal achievable network bandwidth.

C. Effect of Deadline Ratio on System Performance

We presented in Sec. VII-A that given Cnet and T d
f,min,

there is an optimal value for r that minimizes the admissible
end-to-end deadline D. If one tolerates “larger” deadlines, r
can be increased to allow for a bigger round length Cnet (see
(22)), which increases the maximal network bandwidth.

However, (15) yields T d
f ≤ (1 − r) ∗ D − δconstg .

Hence, the bigger r is the smaller T d
f must be, which

may results in more flows rejected by the destination ap-
plication. On the contrary, if r is set to its minimal value
rmin = (2 ∗ Tmin + δconstg ) /D (obtained from eq. (20)), it
yields T = D = Tmin = 1.074 sec and J = 0 sec. In other
words, the maximal admissible jitter (obtained from (10)) is
J < T s

f + Cr − Cf ≈ 0.390 sec.
How to set the parameters for DRP depends on the applica-

tion. For instance, if one consider an acoustic sensing scenario,
responsiveness is usually quite critical, and the sensors (i.e.,
the APs) should spend most of their time on sensing, not being
busy with flushing Bolt. Thus, we want to support a rather
small Dmin while having a strong constraint on T d

f,min. This
will come at the cost of a ”small” network bandwidth.

VIII. SIMULATION OF DRP
DRP builds upon Bolt and Blink. As pictured in Fig. 2,

the underlying hardware and software of the dual-processor
platform containing AP , CP , and Bolt has been designed,
produced, and extensively used in sensor network prototypes.
Moreover, Bolt’s real-time and power properties have been
formally verified [16]. Similar statements hold for Blink. The
real-time guarantees it provides have been formally verified,
the protocol has been implemented in physical networks and
intensively tested [11]. Moreover, Blink is a real-time layer
built on top of the basic communication primitive Glossy [19]
and the Low-power Wireless Bus (LWB) [20]. Glossy is based
on the disruptive concept of network-wide synchronous trans-
missions. All the above implementations have been deployed

Table II
SIMULATION PARAMETERS

Parameter Symbol Value
WCET of write Cw 116µs

Bolt WCET of read Cr 112µs
WCET of flush Cf 684ms

Round length Cnet 1 sec
Blink Packet size . 32 Bytes

Max number of slots in one round M 46

Number of nodes . 20
DRP Deadline ratio r 0.5

Flushing interval of CP T s
f 1.074 sec

on many testbeds, with up to more than one hundred nodes,
widely varying node densities and network diameters, and in
all cases achieved more than 99% data yield [11], [19], [20];
As demonstrated in [19], it is even possible to achieve end-
to-end packet reliabilities as high as 99.9999 %.

We evaluate the run-time behavior of DRP based on values
and parameters from these physical implementations. The
simulation framework we use for the evaluation tracks the
latency of each individual packet through the cyber-physical
system including all APs, CPs, Bolt and the wireless commu-
nication network. This setting enables a practical evaluation of
DRP. Physically, the simulation runs on Matlab scripts.
Objective. In the last section, we have derived optimal per-
formances that DRP can achieve, according to our protocol
analysis. However, in order to provide hard guarantees on
end-to-end deadlines and buffer sizes, the analysis is based on
worst-case scenarios, which can be pessimistic. To support the
relevance of this ”optimal” performance, we now investigate
the tightness of the analysis.
Use case. Let us assume that our network models an acoustic
wireless sensor network monitoring, for example, high alpine
regions. When a rock cracks, sensor data must be collected and
forwarded to a sink node for processing. As the local memory
is limited, the data must be sent as fast as possible to the sink,
but it should not be at the cost of data reliability, otherwise
hindering the data processing. This realistically motivates the
use of DRP in such a scenario.
Procedure. We use parameters from the physical Bolt platform
presented in Fig. 2 and from a running implementation of
Blink. The complete list of parameters is provided in Table II.

One node acts as the sink (say node 1) and communicates
with all other nodes in the network. As described in Sec. V,
DRP is initialized with a basic set of flows Finit, which is
necessary in order to register subsequent flows

Finit =

{
(1 , n , T = 10 sec , J = 0 sec , D = 30 sec)
(n , 1 , T = 10 sec , J = 0 sec , D = 30 sec)

}
for n ∈ (2..20). In practice, such flows can also be used to
send low-priority data (e.g., status data) regularly to the sink.

Blink computes schedules assuming the first packet of each
flow is available for communication at t = 0 sec. The actual
epoch at which the APs write the first packet of each flow
is randomized between 0 sec and the flow’s minimal message
interval T ; subsequent packets are sent with period T .



0 10 20 30 40 50 60 70 80 90 100
0

2

4

6
96%

Analytic bound
Percentage of packets [%]

End-to-end latency of packets [% of analytic bound]

Figure 8. Distribution of end-to-end packet latency in percentage of the
analytical worst-case bound. A few packets experience a latency close to the
worst-case bound, showing that our analysis is both safe and tight.

Upon occurrence of an event, four nodes (say nodes 2 to 5)
concurrently detect it and emit a request for a new flow to the
sink node. To transfer the event data as fast as possible, the
message interval is chosen as small as possible (i.e., equal to
T s
f , the flushing interval of CP – Refer to (4), (5) and (13)),

Fnew =
{

(n , 1 , T = 1.074 sec , J = 0 sec , D = 10 sec)
}

for n ∈ (2..5). We record the actual end-to-end latency of all
packets during one minute, in which about 220 packets are
exchanged in the network.
Results. Fig. 8 shows the distribution of end-to-end packet
latency in percentage of the worst-case bound predicted by
our analysis (see Th. 1). We see that a few packets indeed
experience an end-to-end latency up to 96 % of the analytic
worst-case bound. Our simulations also indicate that, in many
cases, the worst-case buffer sizes of CP and Bolt are reached.
Overall, these results support our analysis of DRP, showing
that our worst-case bounds are safe and tight, and the optimal
performance discussed in the previous section is sound.

IX. CONCLUSIONS

In this paper, we tackle the problem of providing end-
to-end real-time guarantees between interfaces of distributed
applications in a wireless cyber-physical system. Unlike prior
work, we look at the complete chain of concurrent tasks and
shared resources involved in the message transfer between
applications. Based on the decoupling of wireless real-time
communication from application tasks on individual devices,
we design a distributed protocol that preserves the decoupling
to the largest extent possible, while guaranteeing that all
messages received by a destination application meet their end-
to-end deadlines. We analyze our design and derive worst-case
bounds on buffer sizes and end-to-end delay along the chain.
Simulations validate that our bounds are both safe and tight.
Acknowledgments. This work was supported by Nano-
Tera.ch with Swiss Confederation financing, and by the DFG
within the Cluster of Excellence “Center for Advancing Elec-
tronics Dresden” (CFAED) and Priority Program 1914.

REFERENCES

[1] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
The next computing revolution,” in Proc. of ACM/IEEE DAC, 2010.

[2] J. Stankovic, I. Lee, A. Mok, and R. Rajkumar, “Opportunities and
obligations for physical computing systems,” Computer, vol. 38, no. 11,
2005.

[3] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He, “RAP:
A real-time communication architecture for large-scale wireless sensor
networks,” in Proc. of IEEE RTAS, 2002.

[4] J. A. Stankovic, T. F. Abdelzaher, C. Lu, L. Sha, and J. C. Hou, “Real-
time communication and coordination in embedded sensor networks,”
Proc. IEEE, vol. 91, no. 7, 2003.

[5] T. He, J. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A stateless
protocol for real-time communication in sensor networks,” in Proc. of
IEEE ICDCS, 2003.

[6] WirelessHART, “Wirelesshart,” 2007. [Online]. Available: http://en.
hartcomm.org/main article/wirelesshart.html

[7] ISA100, “Wireless compliance institute,” 2009. [Online]. Available:
http://www.isa100wci.org/

[8] T. Watteyne, V. Handziski, X. Vilajosana, S. Duquennoy, O. Hahm,
E. Baccelli, and A. Wolisz, “Industrial wireless IP-based cyber-physical
systems,” Proc. IEEE, vol. 104, no. 5, May 2016.

[9] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-time scheduling for
wirelesshart networks,” in Proc. of IEEE RTSS, 2010.

[10] ——, “End-to-end communication delay analysis in industrial wireless
networks,” IEEE Trans. Computers, vol. 64, no. 5, 2015.

[11] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele, “Adap-
tive real-time communication for wireless cyber-physical systems,” ETH
Zurich, Tech. Rep., 2016.

[12] H. Kopetz, “The time-triggered model of computation,” in Proc. of IEEE
RTSS, 1998.

[13] N. Baccour et al., “Radio link quality estimation in wireless sensor
networks: A survey,” ACM Trans. Sen. Netw., vol. 8, no. 4, 2012.

[14] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srinivastava, “Power man-
agement in energy harvesting sensor networks,” ACM Trans. Embed.
Comput. Sys., vol. 6, no. 4, 2007.

[15] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Virtual synchrony
guarantees for cyber-physical systems,” in Proc. of IEEE SRDS, 2013.

[16] F. Sutton, M. Zimmerling, R. Da Forno, R. Lim, T. Gsell, G. Gi-
annopoulou, F. Ferrari, J. Beutel, and L. Thiele, “Bolt: A stateful
processor interconnect,” in Proc. of ACM SenSys, 2015.

[17] R. L. Cruz, “A calculus for network delay. i. network elements in
isolation,” IEEE Trans. Inf. Theory, vol. 37, no. 1, 1991.

[18] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. of IEEE ISCAS, 2000.

[19] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in Proc. of ACM/IEEE
IPSN, 2011.

[20] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proc. of ACM SenSys, 2012.

[21] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A
new resource reservation protocol,” IEEE Network, vol. 7, no. 5, 1993.

[22] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Microprogram-
ming, vol. 40, 1994.

[23] M. González Harbour, J. G. Garcı́a, J. P. Gutiérrez, and J. D. Moyano,
“Mast: Modeling and analysis suite for real time applications,” in Proc.
of ECRTS, 2001.

[24] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis-the symta/s approach,” in IEE Proc.
Computers and Digital Techniques, vol. 152, no. 2, 2005, pp. 148–166.

[25] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System architec-
ture evaluation using modular performance analysis: a case study,” Int.
Journal on Software Tools for Technology Transfer, vol. 8, no. 6, 2006.

[26] J. Åkerberg, F. Reichenbach, M. Gidlund, and M. Björkman, “Measure-
ments on an industrial wireless HART network supporting PROFIsafe:
A case study,” in Proc. of IEEE ETFA, 2011.

[27] T. O’donovan et al., “The ginseng system for wireless monitoring and
control: Design and deployment experiences,” ACM Trans. on Sensor
Networks, vol. 10, no. 1, 2013.

[28] M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele, “On modeling low-
power wireless protocols based on synchronous packet transmissions,”
in Proc. of IEEE MASCOTS, 2013.

[29] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Trans. Autom. Control, vol. 49, no. 9, 2004.

[30] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Springer, 2011.



APPENDIX

Worst-case analysis of the source delay.
Definition 1 (Source delay – δsource). The source delay is the
elapsed time from a packet being written in Bolt by the source
APs until the end of the flush operation where it is read
out of Bolt by the source CPs . For a flow Fi, it is denoted by
δsource, i.

Lemma 4. For any flow Fi, the source delay is upper-bounded
by

δsource, i ≤ Cw + T s
f + Cf (24)

Proof. Let us recall that a flush is a sequence of read

operations. When the Bolt queue is found empty, the flush

is terminated and no other read is performed until the next
flush (refer to V-A for details). Therefore, if the Bolt queue
is empty and a write operation terminates just after a flush

is triggered, that flush immediately terminates and the packet
is delayed until to the end of the next flush. Possible jitter
on the write operation pattern does not have any influence
on the worst-case for δsource, i. This worst-case scenario for
the source delay is illustrated on Fig. 9.

Figure 9. Worst-case analysis of the source delay. A packet is written as early
as possible such that it misses a flush and must wait until the next one.

Worst-case analysis of the network delay.
Definition 2 (Network delay – δnetwork). The network delay
is the elapsed time from a packet being available for commu-
nication at the source CPs until the end of the communication
round where it is served by the wireless protocol (i.e., when
it is available at the destination CPd ). For a flow Fi, it is
denoted by δnetwork, i.

Lemma 5. For any flow Fi, the network delay is upper-
bounded by

δnetwork, i ≤ Ti +Di +

⌊
Ji + Cf − Cr

T s
f

⌋
· T s

f (25)

Proof. As presented in V-B, Blink guarantees that every packet
matching the expected arrival is served in a round that
terminates before the network deadline Di. Hence, the delay
of an expected packet is no more than Di.

However, the actual arrival of packets at the source CPs

does not match the expected arrival in general, but results from
flush operations, which occur every T s

f time unit. Hence, a

packet may arrive earlier than the next expected packet. That
mismatch between the two arrival times (actual and expected)
adds up with the delay of the expected packet (i.e., Di).

Let us consider first that the flow Fi has no jitter (i.e.,
Ji = 0) and let m be the mismatch between actual and
expected arrival time at CPs . m cannot be larger than the
flow’s minimum message interval Ti

m ≤ Ti

The intuition is given with Fig. 10. See the caption for details.

Figure 10. Worst-case analysis of the network delay without jitter. Because of
the Bolt queue being empty, packet A misses the first flush operation (similarly
as in Fig. 9), hence the slot allocated to Fi in round 1 is wasted. Due to
packets released from other flows in the meantime, packet B is flushed directly
in the operation preceding round 3, in which flow Fi is allocated a new slot.
However, as packet A is still in queue, packet B is not served right away
but is delayed until the next allocated slot (i.e., in round 6). This creates a
mismatch of Ti for packet B. Furthermore, the mismatch cannot get bigger;
assume B were to be available at CPs earlier (i.e., one flush operation before,
at least), because the time interval between A and B must be at least Ti , A
would arrive earlier as well. Hence, A would not miss the slot in round 1, B
would be served in round 3, and thus it would yield a smaller mismatch for
packet B.

Now, if flow Fi has also jitter Ji, this may entail a bigger
mismatch. Actual ”arrival” of packets (i.e., the epoch when
a packet is available for communication at the source CPs ,
according to the definition of the network delay) can occur
only every T s

f (i.e., at the end of one flush operation).
Therefore, one can see that jitter may induce an extra delay, or
mismatch, of roughly

⌊
Ji/T

s
f

⌋
· T s

f . A more precise analysis
of the flushing dynamics (see Fig. 11 for details) entails that,
overall, the worst-case mismatch m is bounded by

m ≤ Ti +

⌊
Ji + Cf − Cr

T s
f

⌋
· T s

f (26)

and finally,

δnetwork, i ≤ Di +m

δnetwork, i ≤ Ti +Di +

⌊
Ji + Cf − Cr

T s
f

⌋
· T s

f



Figure 11. Influence of jitter on the network delay. Let us have a closer look
at packet B from the previous figure, positioned as early as possible (i.e., if
it were earlier, so would be A, which would then not miss its slot in round
1). Due to jitter, B is released earlier, say by a amount j. This can yield
packet B’ (B with jitter) to be read out in a previous flush operation.
In the worst-case, packet B’ is read out one operation earlier as soon as
j is bigger than T s

f − Cf + Cr , which increases the mismatch m by T s
f .

Similarly, m increases by k · T s
f when j reached k · T s

f − Cf + Cr , which

yields k =

⌊
j+Cf−Cr

Ts
f

⌋
and concludes to equation (26).

Worst-case analysis of the destination delay.
Definition 3 (Destination delay – δdest). The destination delay
is the elapsed time from a packet being available at the
destination CPd until the end of the flush operation where
it is read out of Bolt by the destination APd (i.e., when it is
available for the application). For a flow Fi, it is denoted by
δdest, i.

Lemma 6. For any flow Fi, the destination delay is upper-
bounded by

δdest, i ≤ M ∗ Cw − (M − 1) ∗ Cr + T d
f + Cf (27)

Proof. The situation is similar as for the source delay, except
that CPd writes every Tnet time unit (i.e., after each round)
all the packets it received during the last round, which can be
as many as M packets. The maximal delay for a packet occurs
when it is written too late to be read out during an ongoing
flush and must wait for the next one.

A careful analysis of the Bolt dynamics shows that the read
operation is slightly shorter than write [16] (i.e., Cr < Cw,
see Table II). Hence, the more packets are written at once by
CPd , the later a flush can start and still miss the last written
packet. The worst-case is illustrated on Fig. 12.

Figure 12. Worst-case analysis of the destination delay. A packet is written
as early as possible such that it misses a flush and must wait until the
next one.


