
Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless
Mesh Networks

Carsten Herrmann
Networked Embedded Systems Group

TU Dresden, Germany
carsten.herrmann@tu-dresden.de

Fabian Mager
Networked Embedded Systems Group

TU Dresden, Germany
fabian.mager@tu-dresden.de

Marco Zimmerling
Networked Embedded Systems Group

TU Dresden, Germany
marco.zimmerling@tu-dresden.de

ABSTRACT

Many-to-all communication is a prerequisite for many applications
and network services, including distributed control and data repli-
cation. However, current solutions do not meet the scalability and
latency requirements of emerging applications. This paper presents
Mixer, amany-to-all broadcast primitive for dynamicwirelessmesh
networks. Mixer integrates random linear network coding (RLNC)
with synchronous transmissions and approaches the order-optimal
scaling in the number of messages to be exchanged. To achieve an
efficient operation in real networks, we design Mixer in response
to the theory of RLNC and the characteristics of physical-layer
capture. Our experiments demonstrate, for example, that Mixer
outperforms the state of the art by up to 3.8× and provides a relia-
bility greater than 99.99 % even at a node moving speed of 60 km/h.

CCS CONCEPTS

• Networks → Network protocol design; Link-layer proto-

cols;Cyber-physical networks; Network dynamics; •Computer

systems organization → Embedded and cyber-physical sys-

tems; Dependable and fault-tolerant systems and networks;

KEYWORDS

Wireless mesh networks, Many-to-all broadcast, Random linear
network coding (RLNC), Synchronous transmissions, Capture effect,
Cyber-Physical Systems (CPS), Industrial Internet of Things (IIoT)

ACM Reference Format:

Carsten Herrmann, Fabian Mager, and Marco Zimmerling. 2018. Mixer:
EfficientMany-to-All Broadcast in DynamicWirelessMeshNetworks. In The
16th ACM Conference on Embedded Networked Sensor Systems (SenSys ’18),
November 4–7, 2018, Shenzhen, China. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3274783.3274849

1 INTRODUCTION

Many-to-all broadcast is the process of disseminating information
from one, multiple, or all nodes to every node in a network. It is
a universal communication primitive as it can serve any possible
traffic pattern (point-to-point, one-to-many, all-to-all, etc.), and it
is fundamental for a growing number of applications and network
services involving multiple sources and multiple destinations.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SenSys ’18, November 4–7, 2018, Shenzhen, China
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5952-8/18/11.
https://doi.org/10.1145/3274783.3274849

For example, closing distributed feedback loops in cyber-physical
systems relies on wireless communication among sensors (sources),
actuators (destinations), and controllers (acting as sources and des-
tinations). To enable coordination in autonomous systems, such
as collaborative agents [35], robotic materials [9], and swarming
drones [56], each node needs to collect information (e.g., location)
from every other node and disseminate its own information to all
others. Indeed, a certain class of closed-loop control problems is
only tractable if each node can make decisions with knowledge of
the full system state [5], requiring many-to-all communication.

The same need arises in support of programming abstractions [52]
and fault-tolerance mechanisms [60], for example, when some ap-
plication logic is replicated across multiple distributed devices and
nodes need to report every message to all replicas [20]. The initial
distribution of messages across sources depends on the application
and can also change dynamically at runtime. For instance, in drone-
assisted disaster response, all nodes need to regularly exchange one
message with all others to prevent collisions or to keep a desired
flight formation [7], while sometimes one node may have multiple
messages to disseminate, such as an image taken with an on-board
camera informing a group of human rescuers on the ground [25].

To support these emerging applications, a many-to-all broadcast
primitive needs to meet the following key requirements:
• Fast and reliable: To reduce the impact on application perfor-
mance and to keep up with the dynamics of physical processes,
many-to-all communication must be fast (i.e., support end-to-
end communication delays and intervals of a few hundred
milliseconds [2] or less) and also highly reliable [62].
• Support for dynamic mesh topologies: Rotating, flying, or other-
wise mobile entities cause significant network dynamics, while
multi-hop communication and mesh topologies are either ben-
eficial or a necessity for the application scenario [4, 27, 45, 57].
• Support for adequate message sizes: Many applications feature
payloads that are tens of bytes in size or larger [25, 45].
• Energy efficient: The employed devices are often battery-power-
ed [2, 54] or harvest energy from the environment [9]. More-
over, size and weight constraints call for small batteries, low-
power radios, and resource-limited microcontrollers [25, 54].

Existing many-to-all solutions fall short of these requirements.
Approaches based on routing, such as WirelessHART, ISA100.11a,
and RPL on top of TSCH (6TiSCH), which exchange messages via an
explicitly built and maintained structure, target different scenarios
with static nodes and packet intervals of several seconds [16]. Using
them for many-to-all broadcast may require many-to-one upward
routing followed by one-to-all downward routing, which suffers
from scalability, efficiency, and reliability issues [29]. Furthermore,

145

https://doi.org/10.1145/3274783.3274849
https://doi.org/10.1145/3274783.3274849

SenSys ’18, November 4–7, 2018, Shenzhen, China Carsten Herrmann, Fabian Mager, and Marco Zimmerling

since these solutions rely on a known and stable network topol-
ogy, they may fail in distributed or uncoordinated settings [23] and
perform poorly in the presence of mobile devices [19] or other net-
work dynamics [61]. Some recent proposals based on synchronous
transmissions overcome this problem by decoupling the protocol
logic from the time-varying network topology. For example, Chaos
works well for all-to-all exchange of small payloads (e.g., one byte
per node) as required for network-wide consensus [3] and data ag-
gregation [37], but performs inefficiently for payloads larger than a
few bytes [47]. A series of network-wide Glossy floods [21] is then a
better option; however, the required bandwidth and overall latency
increase rapidly with the number of messages to be exchanged.
Contribution and road-map. This paper presents Mixer, a new
many-to-all broadcast primitive for dynamic wireless mesh net-
works. Mixer supports the full spectrum from one-to-all to all-to-
all communication, and significantly outperforms prior many-to-all
solutions in latency, goodput, and radio-on time while providing
nearly perfect reliability despite significant network dynamics.

The key ideas behind Mixer are as follows: (1) Rather than per-
forming M sequential floods to disseminate M messages, Mixer
overlays all M floods by letting nodes mix packets using random
linear network coding (RLNC). This way, Mixer disseminates allM
messages at once and approaches the theoretically optimal scaling
asM increases. (2) Mixer combines RLNC with synchronous trans-
missions. While RLNC aims to maximize the utility of individual
packets, synchronous transmissions aim to maximize spatial reuse.

To exploit the synergy of both concepts for efficient many-to-all
communication in real wireless networks, we must tackle a number
of challenges as outlined in §2. Our design of Mixer, described in
§3, addresses these challenges and yields significant improvements
compared to a straightforward combination of the two concepts.

We prototype Mixer on the TelosB (see §4), which has a 802.15.4
radio and a 16-bit MSP430 microcontroller, to allow for a fair com-
parison with the state of the art on public testbeds. We also port
compute-intensive parts of Mixer to modern 32-bit ARM Cortex-
M0+/M4 platforms to project the performance gains with more
processing power and faster physical layers, such as 802.11.

We evaluate Mixer in §5 using experiments on two testbeds
with up to 94 nodes, on dynamic networks with failing devices and
a mobile node attached to a car driving 20–60 km/h, and through
microbenchmarks on four different platforms. We find that Mixer
is up to 3.8× faster and more efficient than fine-tuned sequential
Glossy floods and provides a reliability greater than 99.99 % even
in the presence of node mobility. For example, Mixer achieves a
goodput of up to 53.7 kbit/s and needs less than 300ms to exchange
27 60-byte messages in an all-to-all fashion on FlockLab [42]. Our
microbenchmarks indicate that the same scenario would take less
than 10ms when runningMixer on faster CPUs and physical layers.

In summary, this paper contributes the following:
• Mixer, a many-to-all broadcast primitive that approaches the
order-optimal scaling in the number of messages in real dy-
namic wireless mesh networks.
• Adesign that combines RLNCwith synchronous transmissions
and thereby enables Mixer to perform efficiently in practice,
while being highly reliable and resilient to network dynamics.
• An open-source implementation and experiments demonstrat-
ing several-fold performance gains over the state of the art.

2 OVERVIEW

This section introduces relevant concepts and provides an overview
of Mixer’s operating principle, scope, and key design challenges.

2.1 Basic Operation and Terminology

The principle behindMixer’s operation is best explained by an anal-
ogy with flooding. Assume a set ofM messages is to be exchanged
between N nodes. Using sequential flooding, this takes O (M ·T),
where T is the time needed to flood a single message. Although
protocols like Glossy [21] achieve the theoretically minimum T
in practice, the scaling with factor T becomes problematic as M
grows. Mixer improves the scaling to O (M +T) by considering all
M messages together: Rather than performingM floods in sequence,
Mixer overlays theM floods and simultaneously disseminates all
messages. To this end, nodes mix packets using RLNC and transmit
random linear combinations of previously received packets.

Mathematically speaking, each Mixer node maintains a system
of linear equations given in (1).

*...
,

p1
...

pM

+///
-︸︷︷︸

coded
payloads

=
*...
,

c11 · · · c1M
...

. . .
...

cM1 · · · cMM

+///
-︸ ︷︷ ︸

coding matrix

·
*...
,

m1
...

mM

+///
-︸︷︷︸

messages

(1)

The set of messages m1, . . . ,mM forms a generation of size M .
Mixer nodes exchange linear combinations of these messages,
that is, the ith packet’s payload equals pi =

∑
k cikmk , with ci =

(ci1, . . . , ciM) the coding vector of packet i . A sender transmits ci
together with pi in the same packet. A receiver extracts ci and
pi from the packet and maintains the coding matrix C . When C
reaches full rank (i.e., a node has collectedM linearly independent
packets), then (1) has a unique solution and the node can decode all
messages by solving the system of linear equations. Sending nodes
build packets by adding up a random subset of already collected
rows (pi and ci) of (1), which is possible irrespective of C’s rank.
All computations are performed over the finite field GF(2). As a
consequence, the size of ci isM bits (one bit per cik).

Fig. 1 shows a trace from a 2-hop 802.15.4 network asN =5 nodes
exchangeM =5 messages in an all-to-all fashion using Mixer; that
is, initially each node has its own (one) message, and the goal is that
every node acquires the (four) messages from the other nodes. The
operation of Mixer, called round, proceeds in a series of adjacent
slots. Node 1, the initiator, starts the round by transmitting (Tx) its
message in slot 1, which is received (Rx) by nodes 2, 3, and 5. Since
the packet contains a message that they did not know before, the
rank of their coding matrix C increases from 1 to 2. As a result of
this, nodes 2, 3, and 5 may now start to mix packets using RLNC
and transmit linear combinations of multiple messages. Note that
the use of RLNC allows the nodes to pick the coefficients of ci
randomly without any knowledge of the current network topology.

Every time a node receives an innovative packet—one that is
linearly independent from all previously received packets—the rank
of the coding matrixC increases. OnceC has full rank, all messages
can be decoded using, for example, Gaussian elimination. In the
example of Fig. 1, node 2 is the first to reach full rank in slot 9.

We also see in Fig. 1 that often multiple nodes transmit in the
same slot. This happens for the first time in slot 3; however, both

146

Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks SenSys ’18, November 4–7, 2018, Shenzhen, China

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Time [slots]

1

2

3

4

5

N
o
d

e
 [

ID
]

Transmit

Receive

Listen

2

2

2 3

2

2

3 4

4

3

5

5

3

3

4

4

4

5

5

5

2

2

2

2

2

3

2

3

2

2

4

4

2

3

2

2

5

3

3

2

5 2 2

4

4

5

5

2

5

2 2

2 4 2

2

Figure 1: Real trace of Mixer in a 2-hop 802.15.4 network with 5 nodes exchanging 5 messages in an all-to-all fashion. Numbers
indicate when the rank of the coding matrix C at each node increases and are equal to the current rank. Each node can receive at most one packet
per slot. Symbols in the upper corner mark which node received what packet in case there are multiple transmitters in the given slot.

node 1 and node 2 receive despite the collision. While traditional so-
lutions try to avoid collisions using carrier sensing, handshaking, or
scheduling, Mixer and several other recent proposals (e.g., [21, 58])
aim to take advantage of collisions to improve spatial reuse. Since
nodes in Mixer typically transmit different packets (as they mix
messages randomly), a common receiver can successfully receive
one of the packets only due to the capture effect [39, 43].

The capture effect occurs if certain signal power and timing
conditions are met. For instance, using 802.15.4 radios operating in
the 2.4 GHz band with OQPSK modulation, the SINR at the receiver
must exceed 3 dB and the packet with the strongest signal must
arrive no later than 128 µs after the first packet [65]. Although
the exact SINR and timing conditions are highly dependent on the
concrete physical layer, the capture effect has already been exploited
in many popular wireless technologies, including Bluethooth Low
Energy (BLE) [59], 802.11 [38], and 802.15.4 [43].
Scope. Although this paper focuses on low-power embedded sys-
tems and 802.15.4, in principle Mixer works on any physical layer
that features the capture effect. Moreover, unlike analog network
coding [31, 53], Mixer does not require any changes to existing
physical layers and hence runs on commodity low-power devices.

Similar to Glossy [21] and other recent works [14, 15, 37], Mixer
is a communication primitive that conceptually sits between the
physical layer and a higher-layer protocol. This higher-layer proto-
col is reponsible for informing all N nodes about the (dynamically
changing) initial distribution ofM messages to nodes before each
Mixer round. Alternatively, Mixer can also be used with a stati-
cally configured initial distribution. Determining such distributions
and building generations of messages is beyond the scope of this
paper, but existing techniques can be used [26, 41] and coupled
with existing higher-layer protocols (e.g., LWB [19] andA2 [3]) that
readily support the network-wide scheduling of Mixer rounds.

2.2 Design Challenges

Theoretical results suggest that RLNC-based gossip protocols like
Mixer perform optimally in static and dynamic networks [12, 24].
Specifically, it has been shown that the number of slots needed to
disseminate all M messages has order-optimal scaling O (M +T)
[24]. This result is based on specific connectivity measures of the
(time-varying) network graph, and the constant factors hidden by
the O-notation heavily depend on these properties. In Mixer, the
connectivity of the wireless network is tightly coupled to the extent
to which the capture effect can be exploited and changes from

one slot to the next even if nodes are stationary. Our overarching
goal in designing Mixer is to combine RLNC and synchronous
transmissions such that the constants hidden in O (M +T) are as
small as possible. This entails addressing four main challenges:

C1: When should a node send or listen? A capture threshold of
3 dB is quite small, so there is a good chance to benefit from cap-
ture in practice. However, because of the very same condition, the
probability of capture drops rapidly as the number of synchronous
transmitters increases [43]. How can a node locally decide whether
it should send or listen in a slot, maximizing spatial reuse without
destroying capture?

C2: What should a node transmit? To achieve low latency (i.e.,
small number of slots), we must devise a policy that allows senders
to easily build packets that are likely innovative for their neighbors
even if the nodes are mobile (i.e., neighborhood changes quickly).

C3: How to ensure synchronous transmissions in the absence of a
global clock? To meet the timing condition of capture, nodes must
communicate in a globally slotted fashion (see Fig. 1). This is difficult
because nodes spend varying amounts of time on processing in each
slot (e.g., when building the next transmit packet), which impairs
synchronization in the face of different clock drifts across nodes.

C4: How to achieve an efficient runtime operation? RLNC im-
proves the utilization of the wireless medium (i.e., helps reduce
the number of slots), but requires nodes to store and process the
coding vector and payload bytes of the packets. Limited memory
and compute power may hinder harnessing these benefits (e.g., by
blowing up the length of the slots), so we need to design efficient
coding and decoding strategies, which are preferably running in
parallel to radio activities whenever possible. Moreover, nodes need
a way to locally figure out whether they are still helpful for the
dissemination process or can turn off their radio to save energy.

2.3 Phases within a Mixer Round

Before describing the design of Mixer in detail, we illustrate its
effectiveness in addressing challenges C1 and C2—the when and
what to transmit—via a comparison with a naïve application of
RLNC, where every node sends packets at random with a fixed
transmit probabilitypt and builds packets by randomly summing up
already collected rows. Fig. 3 shows the average rank increase across
27 nodes on the FlockLab testbed [42] for the random approach
(including our mechanisms to address challenges C3 and C4) and
when all design features of Mixer are enabled. Despite the fact that
Mixer reduces the number of slots required to reach full rank (27

147

SenSys ’18, November 4–7, 2018, Shenzhen, China Carsten Herrmann, Fabian Mager, and Marco Zimmerling

0 100 200 300 400 500
0

10

20

30

Slot

R
a
n
k

all features
purely randomstart

up

ope
rati
ng

compl
etion finalization

Figure 3: Average rank increase in a one-to-all scenario on

FlockLab with different feature sets (M = 27 messages).

in this scenario) from 320 to 120, we can distinguish four distinct
phases, which are most apparent in the purely random approach.

In the middle we see a phase with almost linear behavior, empha-
sized by the dashed line. We refer to this as the operating phase since
the rate of average rank increase is high and steady. Before comes
a startup phase with less but increasing rank growth. After the
operating phase follows a time with decreasing rank improvements.
We call this the completion phase as it eventually leads to all nodes
reaching full rank. Last, there is a finalization phase where nodes
still communicate but no longer depend on incoming packets.

The poor performance of the random approach, especially dur-
ing the startup and completion phases, induces questions on the
reasons for the observed behavior and potential improvements.
Consequently, these questions drive the discussion in §3. As visible
in Fig. 3, our design of Mixer improves significantly on the purely
random approach, effectively addressing challenges C1–C4.

3 DESIGN

This section describes the architecture of Mixer and discusses all
major design elements. In §3.1 we introduce the core architecture
of Mixer, which consists of a transport layer and a processing
layer. Since the latter contains the most characteristic features of
Mixer, we present it first in §3.2. It combines two core mechanisms
(§3.2.1 and §3.2.2) with a number of phase-related features (§3.2.3 to
§3.2.5), systematically addressing challenges C1, C2, and (partially)
C4. In §3.3 we present important mechanisms of the transport layer
targeting challenges C3 and C4. We conclude with a short list of
other design properties facilitating C4 in §3.4.

3.1 Core Architecture

To significantly exploit the capture effect, the design of Mixer
incorporates two key ingredients: well-synchronized, time-slotted
communication to meet the capture window and a lightweight but
effective mechanism to steer the set of active transmitters per time

...SFD... SlotNo SenderID Flags CodingVector Payload InfoVector CRC

6 2 1 1 Sv 2Sp Sv

Figure 4: Mixer packet format. Parts in gray are defined by IEEE
802.15.4, CRC is generated by the radio. Sizes in bytes.

slot. From a single node’s perspective, these two design elements are
responsible to decide when to transmit (and when to receive). Their
counterpart is composed of a number of mechanisms influencing
what to transmit with the particular goal to improve the efficiency
of RLNC in the given scenario.Most of the components interact with
each other; Mixer represents the entirety of all design elements,
translated to an appropriate software architecture.

The timing conditions of capture suggest the encapsulation of
the low-level packet transport functionality in a self-contained com-
ponent that provides reliable synchronous packet exchange. Mixer
follows this approach with a two-layer architecture composed of
a time-triggered transport layer and an event-triggered processing
layer (Fig. 2a). The layers are decoupled by receive and transmit
queues, allowing a high degree of parallelized activities on both
layers. Fig. 2b shows the main activities on each layer within the
slots. Each slot has the same fixed lengthTs , which accounts for the
air time Ta of one packet and processing time Tp . By default, the
transport layer is in receive mode. Transmit decisions are made by
the processing layer and passed to the transport layer on demand,
which executes them in the next slot.

Fig. 4 shows the packet format. Note that the payload field con-
tains a linear combination of messages, so its size Sp is equal to the
message size. The packet size, instead, also accounts for all other
fields, such as the size of the coding vector Sv.

3.2 Processing Layer

In the following subsections we detail the individual design mecha-
nisms of Mixer. The transport layer is considered in §3.3; for the
moment we assume it to be working such that we can take slots as
the base unit of the communication grid. We start from the baseline
of the purely random approach introduced in §2.3. The discussion is
driven by the question on how to improve on the observed results,
particularly with respect to the identified phases (Fig. 3).

3.2.1 Semi-coordinated Transmissions. Since real-world and in par-
ticular dynamic networks have varying local node densities, a fixed
transmit probability pt performs unsatisfactory (Fig. 3). An ade-
quate policy should adapt pt to the local densities, striving for the
goal to maximize the number of received packets per slot within
the network. To reach this objective, the number and selection of
transmitters in each slot should be well balanced—high enough and

Processing Layer
event-triggered

Transport Layer
time-triggered

Rx
Queue

Tx
Packet

Tx
Sideload

Matrix

(a) Core architecture.

start processing of
current Rx packet

Rx OSC

init DMA

SFD LEN

post process start Tx

Tx

Ta
Ta
~

Rx on

slot k slot k+1
grid

OSC

DMA... ...

Ts

SLOT
STARTED

RX DATA
READY

SLOT
STARTED

TX
READY

Tx
decision

prepare next
Tx packet

process prior
Rx packet

house-
keeping

Tx
decision

Processing
Layer

Transport
Layer

Radio

fill FIFO

Tp

(b) Radio, transport layer, and processing layer activities within each slot.

Figure 2: Software architecture and interactions between design components in each Mixer node.

148

Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks SenSys ’18, November 4–7, 2018, Shenzhen, China

Algorithm 1 Semi-coordinated Transmission (core alg.)
d = 1 + num_neiдhbors ▷ local density (from history)
owner = (slot_no + 1) mod N ▷ assign owner to next slot
if owner =my_node_id then ▷ if my slot: transmit

pt = 1
else if owner is neighbor then ▷ if foreign slot: receive

pt = 0
else if Tx in current slot then ▷ do not transmit twice in a row

pt = 0
else ▷ if shared slot:

pt = 1 / (d + 1) ▷ transmit with probability
end if ▷ (+1 accounts for an unknown neighbor)

spatially distributed to reach as many receivers as possible, but still
low enough to allow the capture effect to occur.

For this purpose, each Mixer node maintains a list of received
SenderIDs (Fig. 4) within the lastH slots. Using this sliding-window
history information, which is discarded at the end of a round, nodes
monitor their current neighborhood to drive an adaptive transmit
policy as shown in Algorithm 1. This policy updates the transmit
probability pt of a node depending on the estimated local node
density d . Furthermore it incorporates a kind of local round-robin
scheduling on a selected subset of slots by assigning an owner
to each slot. Owners use their slots to transmit for sure while
neighbors respect this behavior.

The level of determinism induced by this policy increases with
node density because a higher density means that a larger portion
out of N consecutive slots is owned by some node within a neigh-
borhood (in return, the number of shared slots is lower). Hence, in
high-density regions of the network nodes use stronger coordina-
tion than in sparsely populated areas. In this way, we effectively
reduce the uncertainty in the expected number of transmitting
nodes per slot and decouple the capture probability from the node
density (see C1). This behavior also implies that Mixer does not
purely depend on the capture effect; for example, in a one-hop
network, Mixer would tend toward a fully coordinated operation,
where nodes transmit one after another in dedicated slots.

3.2.2 Explicit Innovation Forwarding. A sender assembles a packet
using RLNC: It adds every row from its matrix to the Tx packet with
probability pa = 1/2. In Mixer we add several features somewhat
restricting the randomness to improve average performance. The
most basic one rests upon the assumption that an innovative packet
is also innovative for a node’s neighborhood. Thus, a node adds
every innovative packet immediately to the prepared Tx packet so
the innovation gets relayed with the next transmission for sure.

To thoroughly justify this behavior, we distinguish two cases:
If the innovative packet arrives from outside the common neigh-
borhood (cluster), the above assumption is clearly reasonable. Oth-
erwise, if the packet is sent from inside the cluster, there is still a
chance that it is innovative for some neighbor(s). On the other hand,
including it has no disadvantage for the other neighbors: Since the
packet is innovative for the current node, it is linearly independent
from its Tx packet (i.e., including it corresponds to adding an ad-
ditional matrix row). Note that this behavior influences only the
content of the next Tx packet (what), not the transmit policy (when).

3.2.3 Improving Startup: Adapted Coordination. The reasons for
a slow startup phase (Fig. 3) are best understood with a one-to-all

scenario in mind. In this case, all messages reside at the initiator at
the beginning of a round. After it started the round, the awoken
neighbors are not able to add any innovation to the packets they
send as they simply do not have any. Innovation can only be added
by the initiator if it decides to transmit and if the (randomly built)
packets include some. Clearly, the situation will improve (a) if the
initiator ensures that it sends something innovative, and (b) if there
is a mechanism that prioritizes the transmissions of the initiator at
the beginning of a round. Again, (a) and (b) address the when and
what to transmit.

Improving the number of innovative packets during the startup
phase is easy: Since every message is initially available at exactly
one node, its originator, this node knows that a packet will be
innovative for all other nodes if it incorporates the message for the
first time. Hence, if a node initially has x messages, it can easily
generate x innovative packets by simply transmitting each of its
x messages once. Mixer nodes do exactly this before starting to
build packets at random.

Prioritizing the transmission of innovative packets requires adap-
tations of the transmit policy since there is no connection to packet
contents so far. Mixer bridges this gap by assigning the owner role
of slot k to the originator of message k during the first M slots.
Thus, in case of a perfect wake-up order of all nodes, every slot
k ≤ M is used to transmit message k by its originator, generating a
fast-growing coding potential. As a side effect, this rule circumvents
the question on how the standard transmit policy performs as long
as the history information is very incomplete.

However, using this strategy, we have to cope with two issues:
First, if the originator of message k is not awake in slot k , the slot
is unused. This can lead to corner case situations in which nothing
happens for a long time. Mixer avoids this problem by including the
shared slot rule (cf. Alg. 1) also during the startup phase, but with
pt = 1/min(k, 16) which is independent of d and stimulates a fast
wake-up of all nodes. Second, in one-to-all scenarios the initiator
would transmit in every of the M startup slots and hence would
have no chance to discover its neighbors. Further, if its neighbors
stay silent the whole time, nodes farther away would not wake up.
Mixer avoids this problem with the help of a flag (used only during
startup): If a node sending in slot k is also the originator of message
k + 1, it marks this in the packet header’s flags field and stays silent
in slot k + 1. Nodes receiving the packet in slot k then know that
the owner of slot k + 1 will not use its slot. Thus, they transmit
with pt = 1 in slot k + 1 to push packets into their “back country.”

3.2.4 Improving Completion: Active Requests. In the completion
phase we see a significant slowdown in the average rank increase
with the purely random approach (Fig. 3) due to the well-known
coupon collector’s problem [10, 17]. It is present here because a
node cannot include messages that are outside the row space of its
current matrix. Since there is a high probability that the missing
pieces are also missing at a considerable number of neighbors, it is
difficult to resolve the situation efficiently without any feedback on
the missing pieces. Mixer nodes address this problem by progres-
sively providing such feedback in the form of active requests and
by adapting their transmit policy in response to these requests.

Recall that a node requires rankM to recover all messages, that
is,M linearly independent rows in the coding matrixC in (1). Mixer

149

SenSys ’18, November 4–7, 2018, Shenzhen, China Carsten Herrmann, Fabian Mager, and Marco Zimmerling

nodes keepC in row echelon form. Therefore, rows can be identified
with their pivot elements (the main diagonal of C): If cii is zero,
then row i is missing. Below, we describe how Mixer deals with
missing rows. Mixer also includes mechanisms to deal with missing
columns, which are conceptually similar, but we do not discuss them
here due to space limitations. For the same reason, we skip minor
details and instead focus on the main concepts.

The transition from the operating to the completion phase is
floating and encompassed by a simple rule which provokes an
increasing number of active requests when a node’s rank tends
toward full rank. Every request is communicated in the form of a
flag and corresponding markers in the InfoVector field (Fig. 4) of a
packet that is anyway being sent; thus, requests do not consume
extra packets or slots. If a node receives active requests, it has to
decide how to react, which again translates into the questions of
what and when to transmit. Before answering these two questions,
we discuss how a node stores requests. Storing them is wise since it
may be possible to help multiple nodes with one response packet.

In case of a request, InfoVector contains a bit field wherein each
set bit marks one missing row. Nodes could store every received
request separately, but this may consume a considerable amount of
memory and slow down processing. Instead, Mixer nodes maintain
an any-mask and an all-mask. If a request arrives, they OR the bit
field to the any-mask and AND it to the all-mask. Thus, the all-mask
contains bits that have been set in all incoming requests, while the
any-mask contains bits that have been set in at least one request.
This way, nodes get an idea of which rows might be more helpful
than others. In addition to storing requests, nodes monitor the
traffic and try to discover if pending requests got serviced. If not,
they drop the stored requests after three slots so they do not affect
the communication for a long time.

In case of pending requests, a node decides what to transmit as
follows: It selects a requested row index from the all-mask or, if
the all-mask is empty, from the any-mask. Then it tries to build a
packet whose coding vector contains no non-zero elements to the
left of the selected index. If this is possible, the packet is definitely
innovative for the requesting node. In this case, a node is a helper.
Otherwise, if a node cannot build such packet, it is a non-helper
and it does not matter what it sends. Instead, it should consider not
to send, which brings us to the question on when to transmit.

Extending the transmit policy with rules for request handling is
nontrivial. We pursue three goals: (a) Potential helpers should send
preferred while non-helpers should decrease their transmit proba-
bility pt. (b) NodeID-based owner roles should be more and more
dissolved towards the end of a round in favor of helper/non-helper
roles. (c) Phases without pending requests should be unaffected.
With these goals in mind, choosing pt breaks down into three tasks:
1) Identify own role: helper or non-helper.
2) Estimate role of all n neighbors respectively the number of

helpers n+ and non-helpers n− = n − n+.
3) Adapt pt based on n+, n−, and original owner role.
Step 1 is explained above. For step 2 we need some heuristic since

it is impossible for a node to determine the required information
precisely. In fact, we do not even know if all neighbors process the
same request masks, though this appears as a reasonable assump-
tion at least for the majority of neighbors. A simple heuristic could

Table 1: Transmit probabilities with requests pending.

Own Slot Foreign Slot Shared Slot

pt Helper r̃ /n+ + (1 − r̃) r̃ /n+ 1/n+
pt Non-Helper r̃ /(en−) + (1 − r̃) r̃ /(en−) 1/(en−)

estimate n+ as a fixed percentage of n. To get more precise esti-
mates, we design a more advanced variant which uses an additional
prerequisite: Since the InfoVector field is sent with every packet
anyway, the nodes always utilize it to transmit their current row
state. Receiving nodes store this information in their history such
that every node has a reasonably up-to-date information on the
row state of its neighbors. Using this information, a Mixer node is
able to estimate n+ (and hence n−) more precisely.

The adaptation of pt in step 3 is based on the following reasoning.
In expectation, one helper should send a response packet. Thus, the
transmit probability for helpers pt+ = 1/n+. The transmit probabil-
ity for non-helpers pt− should match the probability that no helper
sends a packet, that is,

pt− =

(
1 − 1

n+

)n+
n − n+

n+→∞
−−−−−−→

e−1

n − n+
=

1
en−

(2)

The numerator in (2) converges fast, so it is sufficient to use the
simplified term as approximation. Since we do not want to break
the original NodeID-based owner roles abruptly, each node lets pt
slide based on its relative rank r̃ = r/M , leading to the transmit
probabilities listed in Table 1.

3.2.5 Improving Finalization: Smart Shutdown. From a single node’s
perspective, the main communication task is accomplished when
reaching full rank. The remaining slots are needless for that node,
but may be useful to support unfinished neighbors. Though, at some
point in time all neighbors have full rank and there is no reason to
stay active; the node could turn off to save energy. However, we
need a prudent signaling mechanism to establish an efficient but
cautious shutdown of the nodes.

If a node has full rank, it sets a flag in every packet it sends.
Receiving nodes mark the full rank status in their history. A node
can shutdown if all its neighbors reached full rank. It informs its
neighbors by sending a packet with a shutdown flag set before
it turns off. The shutdown flag allows a neighbor to immediately
remove that node from its history, leading to an immediate adapta-
tion of its transmit policy. Without the flag, the update would be
delayed until the vanished node falls out of the history window H .

Since the packet with the shutdown flag is sent only once, it
could easily get lost at some neighbors, but it is received with high
probability by at least one neighbor. We address this issue with two
mechanisms: First, on receiving a packet with the full-rank flag set,
the history window applied to the sending node gets shortened
(we use H/3 in §5) based on the expectation that the node may
shutdown in the near future. Second, the full-rank status of all
nodes is actively propagated through the network with the help of
full-rank nodes. Since those do not have the need to provide request
information, they use the InfoVector field to mark finished nodes
instead. With this mechanism it is very unlikely that a full-rank
hint gets lost. Although this does not replace lost shutdown flags,
it enables finished nodes to shutdown themselves instead, which
eventually leads to the same result.

150

Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks SenSys ’18, November 4–7, 2018, Shenzhen, China

3.3 Transport Layer

3.3.1 Establishing the Slot Grid. On the packet transport layer we
have to solve the task of establishing a reliable slot grid as a pre-
requisite for synchronous transmissions. Since system parameters
are known in advance, it is possible to select a fixed nominal slot
length Ts . Unfortunately, real-world hardware suffers from clock
frequency offsets, so we need some mechanism that compensates
for such effects and avoids that grid points drift apart among nodes.
As a natural solution, we implement a phase-locked loop (PLL).

The reference signal of the PLL is built from timestamps taken
on the reception of start-of-frame delimiter (SFD) fields, which
is part of the synchronization header of each packet (see Fig. 4).
This requires that senders start transmissions with appropriate
temporal accuracy, which is typically achieved via meticulous timer
polling. The phase difference between the reference signal and
the local slot grid is low-pass filtered and fed into a proportional-
integral (PI) controller that computes a correction term for the next
grid point and a start offset for transmissions (the latter counteracts
a potential cumulative drift induced by time-of-flight delays). All
filter coefficients and gain parameters are chosen empirically based
on simulations and results from testbed experiments.

In principle it is possible to consider only SFD timestamps that
stem from specific neighbors (e.g., predefined ones or those with
minimum hop distance to the initiator). Our experiments suggest
that taking reference values from arbitrary nodes is sufficient and
works most of the time. If it sporadically fails, a node recognizes this
situation and resynchronizes itself as part of a fallback mechanism.

We want to emphasize that the slot grid is only needed during a
round (i.e., when Mixer is active). Mixer does not require to keep
the slot grid between rounds. In fact, each Mixer node except the
initiator assumes to be out of sync at the beginning of a round. To
lock onto the slot grid, a node activates its receiver continuously
until it receives the first valid frame. The maximum length of this
initial listen phase is only limited by a timeout for the whole round.
This timeout is chosen by the user and can be set to a large value
(e.g., in the range of seconds or even infinity), effectively decoupling
the timing requirements of Mixer from the rest of the system. At
the end of a round, each node returns a reference time, which can
be used (e.g., by a higher-level protocol) to schedule the next round.

3.3.2 Updating Packets via On-the-fly Sideload. Immediately for-
warding innovation as described in §3.2.2 seems to be easy from a
conceptual point of view, but it appears ambitious when looking for
an efficient implementation. The reason is a hard time constraint
which becomes clear when considering the transition from a re-
ceive to a transmit slot (Fig. 2b). To achieve an optimal performance,
the slot length Ts should be as small as possible (bounded by Ta
plus a minimal overhead for pre- and postprocessing). On the other
hand, updating the transmit packet takes time (process received
packet, determine if innovative, if so: add) and has to take place
(theoretically) between end of Rx and start of Tx.

With Mixer, we introduce a feature that allows to solve this
problem in an elegant and efficient way. First, if a node transmits
a packet, it always starts the radio before filling the radio chip’s
transmit FIFO. This is possible because the transmitter needs to
generate a number of synchronization symbols (despite some device
specific tasks, denoted OSC in Fig. 2b) before it sends the actual

data, which provides some time for the program. As a result, a
processing task can change the packet content until right before
the slot starts (irrespective of the packet size). Second, our low-level
transmit routines allow to add additional data to the packet content
while the packet is moved to the FIFO. In other words, they allow
to sideload a second payload into the transmit data stream on-the-fly.
This second payload is incorporated into the transmit data during
very short, anyway required waiting periods in the transfer loop
and hence incur no extra CPU load—it literally comes for free.

With the help of the sideload feature, it is easy to solve the
immediate update problem: Every time a packet is received, the Rx
routine marks it as the current sideload, so it gets added to the next
Tx packet. If it is innovative, the Tx packet carries the innovation.
If not, it does not hurt the Tx packet (by neutralizing its coding
vector to zero) with high probability. If this happens anyway, the
transmission is aborted before it becomes “visible in the air.”

Besides innovation forwarding, the sideload feature also simpli-
fies interlocking critical activities between the transport layer and
the processing layer. Overall, it proves to be a very useful tool.

3.4 Efficient Runtime Operation

Besides the features described above, we facilitate an efficient run-
time operation of Mixer by:
• computing over finite field GF(2), which enables an efficient
implementation on standard hardware and needs just one bit
per message in the coding vectors;
• keeping the coding matrix in row echelon form, which limits
the amount of memory needed for storing packets, reveals
useful information for free (e.g., the rank of the matrix), and
spreads computational load across multiple slots;
• parallelizing radio and CPU activities, which boosts perfor-
mance by allowing to reduce the slot length to the minimum.

4 IMPLEMENTATION

We prototypeMixer on TelosB devices running at 4MHz CPU clock
rate. Our implementation1 comprises about 7900 lines of C code,
where 3500 lines account for the hardware abstraction layer.The
compiled program has a footprint of 21KB in flash and 300 bytes in
RAM (w/o stack, Rx/Tx queues, matrix, history, and request masks).
With payload size Sp , coding vector size Sv = ⌈M/8⌉, and packet
size S = 12 + 2 · Sv + Sp (see Fig. 4), the amount of RAM needed for
the variable-sized elements can be approximated2 as follows:

m [bytes] = 5 · S︸︷︷︸
queues

+ M · (Sv+Sp+2)︸ ︷︷ ︸
matrix

+ (N +9) · Sv︸ ︷︷ ︸
request masks

+ 4 · N︸︷︷︸
history

(3)

Using Mixer requires choosing the slot length Ts based on the
payload size Sp and the generation size M . To achieve good per-
formance, Ts should be small. However, as visible in Fig. 2b, Ts is
lower-bounded by the minimum time needed for low-level packet
transport T̃a and by the time taken by the processing layer Tp . We
profiled our code to derive formulas for both bounds that make it
easy to find a reasonable value for the slot lengthTs ≥ max(T̃a ,Tp).

1The latest source code of Mixer is available to the public under a BSD license at
https://mixer.nes-lab.org.
2Eqn. (3) is simplified, in particular it ignores padding bytes introduced for alignment
purposes and some small internal data elements like flags.

151

https://mixer.nes-lab.org

SenSys ’18, November 4–7, 2018, Shenzhen, China Carsten Herrmann, Fabian Mager, and Marco Zimmerling

The low-level packet transport time can be expressed as

T̃a[µs] = (440 + 32 · S) · 1.037 (4)

which accounts for the packet air time (i.e., 32 µs per byte in IEEE
802.15.4 networks) and a static overhead for basic buffer handling
and RF oscillator calibration. The multiplier in (4) matches internal
tolerance settings; the chosen values compensate for clock drift of
up to 1000 ppm. Further, the processing time reads as

Tp [µs] = 600 + (26 + 0.155 · (Sv + Sp)) ·M + 1.8 · S (5)

A value determined using (5) ensures that the processing layer can
handle the stream of packets on average; temporary overload is
compensated by the Rx queue (see Fig. 2).3

Fig. 5 plots (4) and (5) against the generation sizeM for a payload
size of 60 bytes. We see that the crossover point is for M = 75
messages. For smaller M , Mixer effectively processes packets at
line rate, as the slot length is bounded by the packet air time and
therefore by the bitrate of the physical layer.

5 EVALUATION

Our evaluation answers the following questions:
• How does Mixer’s performance compare to the state of the
art for different number of messages, message sizes, and initial
message distributions (§5.1)?
• How robust is Mixer to network dynamics caused by node
failures (§5.2) and node mobility (§5.3)?
• To what extent does Mixer benefit from faster processors
and/or faster physical layers (§5.4)?

5.1 Performance

We compare Mixer against the state-of-the-art many-to-all solu-
tion based on sequential flooding, called S-Glossy. To implement
S-Glossy, we use the original Glossy code [18], which achieves
the minimum latency for flooding a single message in 802.15.4 net-
works [21]. Note that S-Glossy is equivalent to a data-only round
in LWB [19]. It has already been shown [19] that LWB greatly out-
performs routing-based many-to-many solutions [51], rendering a
comparison against such schemes obsolete. Similarly, results from
our work-in-progress reports show that an earlier version of Mixer
outperforms Chaos for messages larger than a few bytes [46, 47].
Other RLNC-based many-to-all approaches like [11, 12, 22] provide
only theoretical or simulation results and are not applicable to prac-
tical wireless mesh networks because the assumed communication
models do not fit. See our discussion in §7 for more details.
Testbeds.We run experiments on two testbeds. On FlockLab, we
use 27 TelosB nodes sparsely deployed across one floor in an office
building [42]. Indriya features 94 devices densely deployed across
three floors [13]. Nodes transmit at maximum power (0 dBm) on
channel 26, yielding a network diameter of 4 and 8 hops on FlockLab
and Indriya, respectively. Both testbeds experience interference
from devices affecting the 2.4 GHz band, such as microwaves ovens
and Wi-Fi, Bluetooth, and BLE devices. Each run lasts 30–60min.
Metrics. Reliability is the percentage of delivered messages (i.e.,
received and decoded in case of Mixer). Latency is the time from
the beginning of a round until all messages are delivered (i.e., this
includes the time needed for decoding in Mixer). Goodput is the
number of delivered message bits per unit of time. Radio-on time,

0 10 20 30 40 50 60 70 80 90 100
Generation Size

0

1

2

3

4

5

Ti
m

e
[m

s]

Low-level packet transport time
Processing time

Figure 5: Low-level packet transport time T̃a and processing

timeTp depending on the number of messagesM (i.e., gener-
ation size) for a payload size of 60 bytes.

typically used as a proxy for energy efficiency, denotes the accumu-
lated time the radio is on during a round. We report averages over
all nodes and rounds during a run as well as 25th/75th percentiles.
Parameters. We fine-tune S-Glossy based on several test runs
so it achieves the shortest possible latency at a reliability above
99.9 %. We set the slot length in Mixer as detailed in §4, and set
the round length conservatively. The size of the history window is
3 · N . Since we always measured a reliability of 100 % with Mixer
in the following experiments, we do not report this metric.

5.1.1 Impact of Message Size. To evaluate the impact of the mes-
sage size, we run tests in which each node initially has exactly one
message (all-to-all). We consider message sizes of 10, 35, 60, 85, and
95/110 bytes. Note that 95 and 110 bytes are very close to the largest
message sizes that fit into an 802.15.4 packet given the overhead of
Mixer’s header information for 27 and 94 messages on FlockLab
and Indriya, respectively.4

Results. Fig. 6 plots performance of Mixer and S-Glossy against
message size. We see that Mixer outperforms S-Glossy across all
metrics and settings, by 2.3–2.8× on FlockLab and by 1.4–3.8× on
Indriya. The main reason is that Mixer needs significantly fewer
slots than S-Glossy (e.g., 95 vs. 260 on FlockLab): The combination
of RLNC and synchronous transmissions is more efficient in terms
of communication. The range of performance improvements on
Indriya is wider than on FlockLab as (i) withM = 94 messages the
slot length is determined by the processing timeTp , which limits the
improvement to 1.4× for small messages, and (ii) the larger network
diameter allows for higher spatial reuse, pushing the improvement
up to 3.8× for large messages.

Looking at each individual metric, we find that latency, shown in
Fig. 6a, increases linearly with message size because the slot length
of both primitives increases linearly, too. On FlockLab, Mixer’s
latency is 131–453ms, a range enabling feedback control in indus-
trial automation [2]. Thanks to Mixer’s smart shutdown feature,
radio-on time (Fig. 6b) follows the same linear trend. Both primi-
tives reach their highest goodput (Fig. 6c) with 110-byte messages
on FlockLab: 18.5 kbit/s for S-Glossy and 53.7 kbit/s for Mixer.

3Rearranging (5) givesTp ≈ 0.02M2 + 27M + 0.16SpM + 1.8Sp + 620, which reveals
a quadratic dependency on the generation size M . However, for realistic values of
M the linear term clearly dominates due to the coefficients. This is mainly because
processing happens in machine words, not bits.
4The limited RAM on the TelosB would prevent us from running all-to-all experiments
with messages larger than 35 bytes on Indriya. Thus, for these message sizes on Indriya,
nodes do not store the transmitted full-size payloads (i.e., only the coding vectors are
stored), and instead perform cycle-accurate computations on a fake payload.

152

Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks SenSys ’18, November 4–7, 2018, Shenzhen, China

10 35 60 85 95 110

Message size [bytes]

0.0

0.5

1.0

1.5

F
lo

ck
L

ab
[s

]

0

2

4

6

In
dr

iy
a

[s
]

S-Glossy

Mixer

(a) Latency.

10 35 60 85 95 110

Message size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

F
lo

ck
L

ab
[s

]

0

1

2

3

4

5

In
dr

iy
a

[s
]

S-Glossy

Mixer

(b) Radio-on time.

10 35 60 85 95 110

Message size [bytes]

0

15

30

45

60

F
lo

ck
L

ab
[k

bp
s]

0

15

30

45

60

In
dr

iy
a

[k
bp

s]

S-Glossy

Mixer

(c) Goodput.

Figure 6: Performance in an all-to-all scenario on FlockLab and Indriya for different message sizes.

1 N/8 N/4 N/2 N

Initial message distribution

0.0

0.2

0.4

0.6

0.8

1.0

F
lo

ck
L

ab
[s

]

0

1

2

3

4

In
dr

iy
a

[s
]

S-Glossy Mixer

(a) Latency.

1 N/8 N/4 N/2 N

Initial message distribution

0.0

0.2

0.4

0.6

0.8
F

lo
ck

L
ab

[s
]

0

1

2

3

4

In
dr

iy
a

[s
]

S-Glossy Mixer

(b) Radio-on time.

1 N/8 N/4 N/2 N

Initial message distribution

0

10

20

30

40

50

F
lo

ck
L

ab
[k

bp
s]

0

10

20

30

40

50

In
dr

iy
a

[k
bp

s]

S-Glossy Mixer

(c) Goodput.

Figure 7: Performance on FlockLab and Indriya for different initial message distributions.

7 21 35 49 63
Number of messages

0.0

0.5

1.0

1.5

2.0

L
at

en
cy

[s
]

S-Glossy

Mixer

(a) Latency.

7 21 35 49 63
Number of messages

0.0

0.5

1.0

1.5

R
ad

io
-o

n
ti

m
e

[s
]

S-Glossy

Mixer

(b) Radio-on time.

7 21 35 49 63
Number of messages

0

15

30

45

60

G
o

o
dp

ut
[k

bp
s]

S-Glossy

Mixer

(c) Goodput.

Figure 8: Performance on FlockLab for different number of messages equally distributed to seven source nodes.

5.1.2 Impact of Initial Message Distribution. Theoretical analysis
shows that starting with a well-mixed distribution, where initially
all messages are equally spread over the network, can boost per-
formance compared to the case where all messages reside at the
same node [24]. To evaluate this aspect, we fix the message size
(60 bytes) and the number of messages M (27 on FlockLab, 94 on
Indriya), and vary the fraction of the N nodes that initially holds
the M messages: N (all-to-all), N /2, N /4, N /8, and 1 (one-to-all).
Messages are equally distributed across the respective source nodes.
Results. Our results in Fig. 7 confirm that Mixer benefits from a
well-mixed initial message distribution, while performance with
S-Glossy is unaffected. The effect becomes noticeable when mes-
sages are pooled at N /4 or fewer nodes, yet the performance loss is
at most 22 % compared to the all-to-all case.We attribute this behav-

5We only show results from FlockLab because the number of active nodes on In-
driya changed significantly during our experiments so that the results would not be
comparable to those in Figs. 6 and 7.

ior especially to Mixer’s improved startup phase (§3.2.3), which
ensures fast-growing coding potential even in one-to-all scenarios.

5.1.3 Impact of Number of Messages (Generation Size). In a final
set of performance experiments, we investigate the impact of the
number of messages M to be exchanged in a round (generation
size). We use again a message size of 60 bytes and equally distribute
7, 21, 35, 49, and 63 messages to seven source nodes on FlockLab.5

Results. Looking at Fig. 8, we see that Mixer only has a perfor-
mance advantage over S-Glossy if there are at least a handful of
messages to be exchanged. Otherwise, the coding potential is too
small and fine-tuned sequential Glossy floods perform better. Nev-
ertheless, Mixer’s performance advantage grows quickly with the
number of messages: Mixer is 2× faster and more efficient than
S-Glossy for 21 messages, and already 3× better for 63 messages.

Interestingly, we find in every all-to-all experiment that Mixer
needs on average about 3 ·M slots to deliverM messages despite
vastly different payload sizes, network diameters, and node densi-

153

SenSys ’18, November 4–7, 2018, Shenzhen, China Carsten Herrmann, Fabian Mager, and Marco Zimmerling

230	m

80
	m

2
34

5

9 8 7 6

14 13 11 10

25
33

AB

C
D E

1

Figure 9: Setup of outdoor experiment with a mobile node

mounted on a car that drives at a speed of 20–60km/h.

ties on the two testbeds. This gives an idea of the constants hidden
by the O-notation in the order-optimal scaling O (M +T) of RLNC-
based gossip for our Mixer implementation. Indeed, for small gen-
eration sizesM , the number of slots T needed to disseminate one
message dominates, whereas M dominates for large generation
sizes. T is determined by the diameter of the network.

5.2 Network Dynamics: Node Failures

In practice, nodes can suddenly drop out due to disconnection or
failure. While the absence of a node for several rounds is handled
by a higher-layer protocol, Mixer must cope with situations where
nodes disappear shortly before or during a round.

To study this aspect, we run experiments on FlockLab in which
we let a given number of nodes simultaneously fail. We consider
the failure of 1, 2, and 5 nodes and vary the slot in which the failure
occurs from 1 to 50. For each combination we perform at least 100
rounds. Nodes exchange 10-byte messages in an all-to-all fashion,
and non-failing nodes log after each round how many of the 27
messages they can successfully decode.
Results. Fig. 10 plots the probability that a non-failing node de-
codes all messages against the slot in which the failure occurs. We
see that a failure before or at the very beginning of a round prevents
the non-failing nodes from decoding all messages. This is because
the nodes fail before they can transmit for the first time. Thus, a
failure in later slots increases the probability that the non-failing
nodes can decode all messages. The increase shifts to the right with
more failing nodes as nodes also need to transmit linearly indepen-
dent packets. Beyond a certain point (e.g., slot 20 for 1 failing node),
the probability to decode all messages is close to 100 %.

Note that, barring packet losses due to other reasons, a node for
sure decodes all messages that initially resided at non-failing nodes.
For instance, in our runs each non-failing node always decodes at
least 26, 25, and 22messages for 1, 2, and 5 failing nodes, respectively.

0 10 20 30 40 50
Slot of Node Failure

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 P

ro
ba

bi
lit

y

1 failing node
2 failing nodes
5 failing nodes

Figure 10: Probability that nodes decode allmessages against

the slot in which a set of nodes concurrently fails.

0 50 100 150 200 250 300 350 400 450 500
Time [seconds]

2
3
4
5
6
7
8
9

10
11
13
14
25
33

N
ei

gh
bo

rs
 o

f M
ob

ile
 N

od
e

[ID
]

Rnd 1 CCW Rnd 2 CCW Rnd 3 CCW Turn at Location ETurn at Location E Rnd 1 CW Rnd 2 CW

Figure 11: 1-hop neighbors of mobile node as the car drives

rounds counterclockwise (CCW) and clockwise (CW).

We can therefore conclude that Mixer is highly robust to node
failures, providing guaranteed service to non-failing nodes while
salvaging messages of failing nodes with high probability.

5.3 Network Dynamics: Node Mobility

Emerging applications increasingly rely on nodes attached to mo-
bile entities [35, 56]. We investigate Mixer’s resilience against the
resulting network dynamics in an outdoor experiment.
Scenario. We deploy 14 battery-powered TelosB nodes on card-
board boxes in a 80m ×230m area as illustrated in Fig. 9. Another
node is mounted on a car and attached over USB to a laptop. Nodes
transmit with 0 dBm on channel 26, using Mixer to periodically
exchange 15 28-byte messages in an all-to-all fashion. The mes-
sages contain performance counters and the IDs of all nodes from
which the nodes have directly received a packet during the previous
Mixer round (i.e., their 1-hop neighbors). We set the slot length
to 2ms according to the guidelines in §4. Nodes initiate a round
every 500ms, while the round length is 150 slots. At the end of each
round, the node on the car uses the remaining 200ms to log the
messages it received over USB before the next round begins.

We first measure for 10min with the car standing next to loca-
tion A (see Fig. 9). Then we measure for 10min while performing
different maneuvers with the car. We repeatedly pass locations
A→B→C→D, then make a turn at location E, and repeatedly pass
locations D→C→B→A. We drive with a speed of 20-40 km/h while
going in circles, and hit 60 km/h between locations E and C. Such
speeds are typical of state-of-the-art mini and micro drones [8].
Results. Fig. 11 shows the 1-hop neighbors of the node on the
driving car over time. We can see that the mobile node cannot
directly communicate with all other nodes: It has different sets
of neighbors depending on its location. Indeed, we recognize a
recurring pattern that allows us to infer how often the car drove
around the circle. For example, before completing the fourth round
counterclockwise (CCW), the car drove up to location E, leaving the
mobile node with only two neighors and increasing the network
diameter to at least three hops. Then, the car made a turn and
continued to drive the circle clockwise (CW) three more times.

Despite heavy network dynamics due to the high speed of move-
ment, we measure the same performance compared to when the car
was standing. As visible from Table 2, Mixer consistently provides
high reliability >99.99 % and low latency ≤98.4ms. For shorter mes-
sages (e.g., a few bytes carrying GPS data), one could further reduce
the slot length to 1ms. As a result, latency in this scenario would
reduce to about 50ms, which is sufficient for drone swarm coordi-
nation requiring all-to-all communication every 100ms [7, 56]. In

154

Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks SenSys ’18, November 4–7, 2018, Shenzhen, China

Table 2: Mixer’s performance with and without mobility.

Performance Metric With Mobility Without Mobility

Reliability [%] >99.99 >99.99
Latency [ms] 96.2 98.4

summary, the results show that Mixer is highly robust to network
dynamics and satisfies the demands of emerging applications.

5.4 Potential of Faster CPUs and PHYs

Mixer can benefit from amore powerful processor (CPU): Using the
same physical layer (PHY), a faster CPU allows Mixer to process
packets at line rate for a wider range of payload sizes and number
of messages. For example, 2× faster processing shifts the crossover
point in Fig. 5 from 75 to 215 messages. Conversely, to fully exploit
a faster PHY, the processing speed should increase as well.
CPU cores.We perform microbenchmarks on the TelosB and three
different 32-bit ARM cores: Cortex-M0+ running at 32MHz (labeled
L0), Cortex-M4 running at 80MHz (L4), and Cortex-M4 running at
180MHz (F4). Despite higher clock speeds, L4 and F4 offer extended
instruction sets and richer hardware capabilities than the L0.
Processing speedup. To measure the processing speedup, we port
Mixer’s packet processing routines to the ARM cores. We profile
the time needed to process received packets (building transmit
packets involves similar operations, merely with lower variance).
To obtain real-world execution times for the same input on all
cores, we run tests on FlockLab with 60-byte messages for different
generation sizes (M = {7, 35, 63}) and trace the sequence of received
packets at each node. We feed the collected traces into the four
cores to get a total of 40,000 execution time measurements per core.

The speedups, shown in Fig. 12, are 7–10×, 28–40×, and 62–106×
for the L0, L4, and F4, respectively. The speedup depends on the
generation size M , because Mixer processes payloads in batches
and delayed from coding vectors. This optimization becomes more
important with higher average batch size and thus with more mes-
sages M . We use a highly optimized implementation of this ap-
proach on the TelosB, and expect that similar ARM-specific code
optimizations reduce the differences in speedups for differentM .
Projected benefits. We use (4) and (5) to project the impact of a
faster CPU and/or a faster PHY on Mixer’s performance. Specifi-
cally, we multiply T̃a with the speedup in PHY bitrate and Tp with
the processing speedup over the TelosB. Using the speedups from
Fig. 12, we assume that all processing activites in Mixer benefit
as much as the processing of received packets. In this way, we
can check, for example, whether a CPU core is under-, over-, or
well-dimensioned for a given PHY bitrate.

As an example, consider an all-to-all scenario with 60-byte mes-
sages on FlockLab. We know from §5.1 that Mixer needs about
95 slots with 802.15.4, and studies suggest that capture (and hence

L0 (32 MHz) L4 (80 MHz) F4 (180 MHz)
0

20

40

60

80

100

120

S
pe

ed
up

 o
ve

r T
el

os
B

 10

 40

106

 7

28

62

 8

30

64

M = 7 messages
M = 35 messages
M = 63 messages

Figure 12: Speedup of ARM cores over TelosB in processing

received packets for different generation sizes.

Table 3: Projected latency of Mixer on FlockLab (all-to-all,

60-byte messages) for different PHY bitrates and CPU cores.

Latencies in italics are CPU-bound (i.e., core is underdimensioned).

PHY Bitrate TelosB L0 L4 F4
[Mbit/s] [ms] [ms] [ms] [ms]

0.25 295.6 295.6 295.6 295.6
1 161.8 73.9 73.9 73.9
11 161.8 23.1 6.7 6.7
54 161.8 23.1 5.8 2.6

Mixer) works comparable or better with other PHYs [48]. Table 3
lists projected average latency in milliseconds for 16 PHY/CPU com-
binations, using the minimum speedups for each core from Fig. 12.
We see, for example, that the L0 is sufficient to fully leverage a PHY
bitrate of 1Mbit/s used by BLE, while the L4 or the F4 is needed to
match 11 or 54Mbit/s of 802.11 variants. The latter combination (F4,
54Mbit/s) would reduce latency by 100× compared to the TelosB.

6 DISCUSSION

Larger finite fields. Mixer currently uses GF(2), which keeps the
coding vectors small and allows for a straightforward and efficient
implementation on standard hardware. Instead, the network coding
literature favors larger finite fields, such as GF(28) [22], to increase
the chances that a received packet is innovative. We studied the
impact of larger finite fields on Mixer’s performance in simulation
and found that the gains are smaller than one may expect: Using
GF(22) reduces the average number of slots by about 10 % compared
with GF(2), but GF(23 . . . 28) do not provide further improvements.
We attribute this to the fact that the spreading of innovation in an
area (as promoted by larger finite fields) is upper-bounded by the
influx of messages into that area. It is also questionable whether the
fewer slots with larger finite fields can indeed translate into shorter
latencies in practice as the computational load and the size of the
coding vectors would increase by several orders of magnitude.
Robustness to interference. Mixer achieves nearly perfect re-
liability in almost all our experiments conducted under typical
wireless interference in office buildings. Nevertheless, it would be
possible to borrow standard techniques such as frequency hopping
from other technologies (e.g., Bluetooth) to make Mixer even more
robust to interference. To this end, the slot number may serve as
an index into a pseudo-random sequence of channel frequencies
that is known to all nodes. One may also increase the slot length
Ts to tolerate interference bursts (at the cost of higher latency), or
adapt Ts in a pseudo-random fashion to evade systematic jamming.
Setting the length of a round. Mixer provides a parameter that
specifies the number of slots constituting a round. Together with the
slot length Ts this parameter defines the nominal length of a round
and makes the running time of Mixer predictable, in addition to
the timeout mentioned in §3.3.1. However, one limitation of Mixer
is that the number of slots required until all nodes have reached
full rank is difficult to predict. While some applications allow for
using a conservative estimate, this approach may be problematic for
applications with critical time constraints. Theoretical works have
looked at the worst-case number of slots for different network and
communication models [11, 22, 24, 50]. It would be worthwhile to
adapt these models to Mixer (e.g., by incorporating existing capture
models [33, 64]) to determine safe bounds on the length of a round.

155

SenSys ’18, November 4–7, 2018, Shenzhen, China Carsten Herrmann, Fabian Mager, and Marco Zimmerling

Our experiments suggest that useful predictions are within reach:
We observe in all all-to-all runs that Mixer needs on average about
3 ·M slots despite different network topologies and payload sizes.

7 RELATEDWORK

Theoretical foundations. Ahlswede et al. introduced network
coding, showing that it achieves the multicast capacity of wireline
networks [1]. It was later found that these bounds can be achieved
using linear codes, and that encoding and decoding can be done
in polynomial time [34, 40]. This also holds if nodes pick random
coefficients [28]. These works form the theoretical foundation of
RLNC, which we combine in Mixer with the following technique.
Synchronous transmissions.Mixer exploits simultaneous trans-
missions from multiple senders. SourceSync is the first system that
demonstrates the benefits of multiple senders transmitting the same
packet in real 802.11 networks [58]. Glossy uses this concept for fast
and reliable flooding in multi-hop 802.15.4 networks [21]. These
protocols rely on accurate symbol-level synchronization to benefit
from sender diversity. In Mixer, instead, nodes transmit different
packets, which relaxes the required synchronization to the length
of the preamble to possibly receive one of the transmitted packets
due to the capture effect [38, 39, 65]. The capture effect has been
used for collision resolution [63], network flooding [43], aggrega-
tion [37], and agreement [3]. Instead, Mixer exploits the capture
effect for efficient many-to-all broadcasting of sizable messages.
Practical wireless network coding. Network coding has been
extensively studied in wireless and sensor networks; however, the
vast majority of works focuses on theoretical gains or evaluates new
protocol designs only in simulation (see [55] for a recent survey),
thereby ignoring many practical issues that complicate or even
prevent a real implementation.

COPE [32] and MORE [6] are the first implementations of net-
work coding for multiple unicast flows and a single multicast flow in
802.11 networks. Pacifier [36] achieves a higher multicast through-
put than MORE. These works target stationary networks and spe-
cific traffic patterns, which allows them to leverage long-lived net-
work and routing state for coding and packet forwarding. This,
however, makes them unfit for dynamic networks and concurrent
multicast flows, both of which Mixer readily supports. Moreover,
they target PC-class devices with plenty of compute power, mem-
ory, wireless bandwidth, and energy. Mixer can cope with stringent
constraints on any of these resources, allowing low-power wireless
systems to benefit from network coding without putting restrictions
on the traffic pattern.

Splash [14] and Pando [15] integrate pipelined floodingwith XOR
and fountain coding for one-to-all data dissemination in 802.15.4
networks. While these solutions run on resource-constrained de-
vices, only the source encodes packets; all other nodes forward the
encoded packets and decode, which simplifies design and imple-
mentation. They also assume stationary networks and support only
a single source node. Instead, Mixer supports dynamic networks,
any number of sources, and efficiently performs forwarding, en-
/recoding, and decoding at every node in the network. As a result,
Mixer performs comparable or better to these specialized protocols,
and yet supports a much broader range of scenarios.
Many-to-all broadcasting. The unstructured spreading of mes-
sages in Mixer is reminiscent of gossip [30]. Deb and Médard

showed that combining gossip with RLNC for the dissemination
of multiple messages outperforms any non-coding approach (in
terms of needed slots) in a specific communication scenario [11, 12].
More precisely, they consider a random phone call model where the
underlying network graph is complete. Later works study variants
of this approach theoretically [50] and in simulation [22], primarily
on static networks. However, the underlying network model does
not fit wireless mesh networks because (a) the random phone call
model implies that all links work independently (i.e., there is no
interference); (b) it is assumed that a node is able to receive multiple
packets simultaneously or can perfectly avoid collisions. Further,
the results rely on assumptions regarding the initial message dis-
tribution and the field size used for network coding. In particular,
[12, 50] consider cases where the field size q has been chosen such
that q ≥ M while the simulations in [22] use GF(28). With packet
size constraints as in 802.15.4, such field sizes can lead to significant
limitations and performance degradation as discussed in §6.

Recently, it was shown that RLNC-based gossip achieves the
optimal scaling O (M +T) also in dynamic networks for any initial
message distribution and field size [24]. Furthermore, [24] provides
results for a broadcast model that fits much better to the inherent
nature of wireless networks. However, the analysis is purely theoret-
ical and still assumes that nodes are able to receive multiple packets
simultaneously. As for dynamic wireless mesh networks, Mixer is
the first design that translates the projected benefits from theory
into practice by combining RLNC with synchronous transmissions.

Concurrently to our work, Mohammad and Chan [49] proposed
Codecast, combining LT codes [44]with synchronous transmissions.
LT codes can be interpreted as a special variant of RLNC. However,
they lack the recoding capabilities of generic RLNC: In Codecast, a
node is not able to recode arbitrary payloads, it can only (re-)encode
previously decoded messages. Thus, the coding potential at the
nodes grows slower than it does with Mixer, eventually leading
to longer rounds. Indeed, the results in [49] suggest that Mixer
outperforms Codecast by up to 3× on FlockLab. Further, the design
of Codecast suffers from severe scalability issues for more than
M = 30 messages.

8 CONCLUSIONS

We have presented Mixer, an efficient, versatile, and reliable many-
to-all broadcast primitive for wireless mesh networks. Mixer sup-
ports the full spectrum from one-to-all to all-to-all communication,
from small to large messages, and from static to dynamic networks.
Unlike prior practical many-to-all solutions that route or flood
messages Mixer exploits the synergy of RLNC and synchronous
transmissions for simultaneously disseminating all messages. Our
implementation of Mixer is up to 3.8× faster and more efficient
than the state of the art, while providing nearly 100 % reliability.
Thus, Mixer empowers emerging wireless systems and enables
applications that seemed out of reach so far.

ACKNOWLEDGMENTS

We thank our reviewers for their valuable feedback as well as Jo-
hannes Neumann for his contribution to the early development
versions of Mixer. This work was supported by the German Re-
search Foundation (DFG) within the Cluster of Excellence cfaed
(EXC 1056) and SPP 1914 project EcoCPS (grant ZI 1635/1-1).

156

Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks SenSys ’18, November 4–7, 2018, Shenzhen, China

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. 2000. Network Information Flow.
IEEE Transactions on Information Theory 46, 4 (2000).

[2] J. Åkerberg, M. Gidlund, and M. Björkman. 2011. Future Research Challenges
in Wireless Sensor and Actuator Networks Targeting Industrial Automation.
In Proceedings of the 9th IEEE International Conference on Industrial Informatics
(INDIN).

[3] B. Al Nahas, S. Duquennoy, and O. Landsiedel. 2017. Network-wide Consensus
Utilizing the Capture Effect in Low-power Wireless Networks. In Proceedings of
the 15th ACM Conference on Embedded Networked Sensor Systems (SenSys).

[4] I. Bekmezci, O. K. Sahingoz, and S. đTemel. 2013. Flying Ad-Hoc Networks
(FANETs): A survey. Ad Hoc Networks 11, 3 (2013).

[5] V. D. Blondel and J. N. Tsitsiklis. 2000. A Survey of Computational Complexity
Results in Systems and Control. Automatica 36, 9 (2000).

[6] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. 2007. Trading Structure
for Randomness in Wireless Opportunistic Routing. In Proceedings of ACM SIG-
COMM.

[7] T. H. Chung, M. R. Clement, M. A. Day, K. D. Jones, D. Davis, and M. Jones.
2016. Live-Fly, Large-Scale Field Experimentation for Large Numbers of Fixed-
Wing UAVs. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

[8] J. R. Clapper, J. J. Young, J. E. Cartwright, and J. G. Grimes. 2007.
Unmanned Systems Roadmap 2007-2032. Technical Report. US Depart-
ment of Defense. https://www.globalsecurity.org/intell/library/reports/2007/
dod-unmanned-systems-roadmap_2007-2032.pdf

[9] N. Correll, P. Dutta, R. Han, and K. Pister. 2017. New Directions: Wireless Robotic
Materials. In Proceedings of the 15th ACM Conference on Embedded Networked
Sensor Systems (SenSys).

[10] B. Dawkins. 1991. Siobhan’s Problem: The Coupon Collector Revisited. The
American Statistician 45, 1 (1991).

[11] S. Deb and M. Médard. 2004. Algebraic Gossip: A Network Coding Approach to
Optimal Multiple Rumor Mongering. In Proceedings of the 42nd Allerton Confer-
ence on Communication, Control, and Computing.

[12] S. Deb, M. Médard, and C. Choute. 2006. Algebraic Gossip: A Network Coding Ap-
proach to Optimal Multiple Rumor Mongering. IEEE Transactions on Information
Theory 52, 6 (2006).

[13] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda. 2011. Indriya: A Low-
Cost, 3D Wireless Sensor Network Testbed. In Proceedings of the ICST Conference
on Testbeds and Research Infrastructures for the Development of Networks and
Communities (TridentCom).

[14] M. Doddavenkatappa, M. C. Chan, and B. Leong. 2013. Splash: Fast Data Dis-
semination with Constructive Interference in Wireless Sensor Networks. In
Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[15] W. Du, J. C. Liando, H. Zhang, and M. Li. 2015. When Pipelines Meet Fountain:
Fast Data Dissemination in Wireless Sensor Networks. In Proceedings of the 13th
ACM Conference on Embedded Networked Sensor Systems (SenSys).

[16] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne. 2015. Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH. In Proceedings
of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys).

[17] W. Feller. 1968. An Introduction to Probability Theory and Its Applications (3rd
ed.). Wiley.

[18] F. Ferrari. 2011. Original Glossy Implementation for the TelosB Platform. https:
//sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/

[19] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. 2012. Low-power Wireless
Bus. In Proceedings of the 10th ACM Conference on Embedded Networked Sensor
Systems (SenSys).

[20] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. 2013. Virtual Synchrony Guar-
antees for Cyber-physical Systems. In Proceedings of the 32nd IEEE International
Symposium on Reliable Distributed Systems (SRDS).

[21] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. 2011. Efficient Network Flood-
ing and Time Synchronization with Glossy. In Proceedings of the 10th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN).

[22] C. Fragouli, J. Widmer, and J. Le Boudec. 2008. Efficient Broadcasting Using
Network Coding. IEEE/ACM Transactions on Networking 16, 2 (2008).

[23] B. Haeupler. 2011. Analyzing Network Coding Gossip Made Easy. In Proceedings
of the 43rd Annual ACM Symposium on Theory of Computing (STOC).

[24] B. Haeupler. 2016. Analyzing Network Coding (Gossip) Made Easy. Journal of
the ACM 63, 3 (2016).

[25] S. Hayat, E. Yanmaz, and R. Muzaffar. 2016. Survey on Unmanned Aerial Ve-
hicle Networks for Civil Applications: A Communications Viewpoint. IEEE
Communications Surveys & Tutorials 18, 4 (2016).

[26] J. Heide, M. V. Pedersen, F. H. P. Fitzek, andM. Médard. 2011. On Code Parameters
and Coding Vector Representation for Practical RLNC. In Proceedings of the IEEE
International Conference on Communications (ICC).

[27] H. Hellwagner and C. Bettstetter. 2016. Networking research challenges in
multi-UAV systems. https://bettstetter.com/uav-networking-challenges/

[28] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. 2006.
A Random Linear Network Coding Approach to Multicast. IEEE Transactions on
Information Theory 52, 10 (2006).

[29] T. Istomin, C. Kiraly, and G. P. Picco. 2015. Is RPL Ready for Actuation? A
Comparative Evaluation in a Smart City Scenario. In Proceedings of the 12th
European Conference on Wireless Sensor Networks (EWSN).

[30] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. 2000. Randomized Ru-
mor Spreading. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science (FOCS).

[31] S. Katti, S. Gollakota, and D. Katabi. 2007. Embracing Wireless Interference:
Analog Network Coding. In Proceedings of ACM SIGCOMM.

[32] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. 2006. XORs in
the Air: Practical Wireless Network Coding. In Proceedings of ACM SIGCOMM.

[33] A. Kochut, A. Vasan, A. U. Shankar, and A. Agrawala. 2004. Sniffing out the
correct Physical Layer Capture model in 802.11b. In Proceedings of the 12th IEEE
International Conference on Network Protocols (ICNP).

[34] R. Koetter and M. Medard. 2003. An Algebraic Approach to Network Coding.
IEEE/ACM Transactions on Networking 11, 5 (2003).

[35] L. Kong, X. Chen, X. Liu, Q. Xiang, Y. Gao, N. B. Baruch, and G. Chen. 2017.
AdaSharing: Adaptive Data Sharing in Collaborative Robots. IEEE Transactions
on Industrial Electronics 64, 12 (2017).

[36] D. Koutsonikolas, Y. C. Hu, and C.Wang. 2012. Pacifier: High-throughput, Reliable
Multicast Without “Crying Babies” in Wireless Mesh Networks. IEEE/ACM
Transactions on Networking 20, 5 (2012).

[37] O. Landsiedel, F. Ferrari, and M. Zimmerling. 2013. Chaos: Versatile and Efficient
All-to-all Data Sharing and In-network Processing at Scale. In Proceedings of th
11th ACM Conference on Embedded Networked Sensor Systems (SenSys).

[38] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi. 2007. An Experimental
Study on the Capture Effect in 802.11a Networks. In Proceedings of the 2nd ACM
International Workshop on Wireless Network Testbeds, Experimental Evaluation
and Characterization (WinTECH).

[39] K. Leentvaar and J. Flint. 1976. The Capture Effect in FM Receivers. IEEE
Transactions on Communications 24, 5 (1976).

[40] S. R. Li, R. W. Yeung, and N. Cai. 2003. Linear Network Coding. IEEE Transactions
on Information Theory 49, 2 (2003).

[41] Y. Li, E. Soljanin, and P. Spasojevic. 2011. Effects of the Generation Size and
Overlap on Throughput and Complexity in Randomized Linear Network Coding.
IEEE Transactions on Information Theory 57, 2 (2011).

[42] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel. 2013.
FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling of
Wireless Embedded Systems. In Proceedings of the 12th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN).

[43] J. Lu and K. Whitehouse. 2009. Flash Flooding: Exploiting the Capture Effect for
Rapid Flooding in Wireless Sensor Networks. In Proceedings of IEEE INFOCOM.

[44] Michael Luby. 2002. LT Codes. In Proceedings of the 43rd Symposium on Founda-
tions of Computer Science (FOCS).

[45] M. Luvisotto, Z. Pang, and D. Dzung. 2016. Ultra High Performance Wireless
Control for Critical Applications: Challenges and Directions. IEEE Transactions
on Industrial Informatics 13, 3 (2016).

[46] F. Mager, C. Herrmann, and M. Zimmerling. 2017. One for All, All for One:
Toward Efficient Many-to-Many Broadcast in Dynamic Wireless Networks. In
Proceedings of the 4th ACM Workshop on Hot Topics in Wireless (HotWireless).

[47] F. Mager, J. Neumann, C. Herrmann, M. Zimmerling, and F. H. P. Fitzek. 2016.
All-to-all Communication in Multi-hop Wireless Networks with Mixer: Poster
Abstract. In Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems (SenSys).

[48] J. Manweiler, N. Santhapuri, S. Sen, R. R. Choudhury, S. Nelakuditi, and K. Muna-
gala. 2009. Order Matters: Transmission Reordering in Wireless Networks. In
Proceedings of the ACM Annual International Conference on Mobile Computing
and Networking (MobiCom).

[49] M. Mohammad and M. C. Chan. 2018. Codecast: Supporting Data Driven In-
network Processing for Low-power Wireless Sensor Networks. In Proceedings of
the 17th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN).

[50] D. Mosk-Aoyama and D. Shah. 2006. Information Dissemination via Network
Coding. In Proceedings of the IEEE International Symposium on Information Theory
(ISIT).

[51] L. Mottola and G. P. Picco. 2011. MUSTER: Adaptive Energy-Aware Multisink
Routing in Wireless Sensor Networks. IEEE Transactions on Mobile Computing
10, 12 (2011).

[52] L. Mottola and G. P. Picco. 2011. Programming Wireless Sensor Networks:
Fundamental Concepts and State of the Art. Comput. Surveys 43, 3 (2011).

[53] B. Nazer and M. Gastpar. 2011. Compute-and-Forward: Harnessing Interference
Through Structured Codes. IEEE Transactions on Information Theory 57, 10 (2011).

[54] RCR Wirelesss News. 2016. Amazon’s ambitions will push delivery drones’
battery lives to the limit and maybe beyond. http://www.rcrwireless.com/
20160802/europe/five-challenges-drones-tag28

[55] P. Ostovari, J. Wu, and A. Khreishah. 2014. Network Coding Techniques forWireless
and Sensor Networks. Springer.

157

https://www.globalsecurity.org/intell/library/reports/2007/dod-unmanned-systems-roadmap_2007-2032.pdf
https://www.globalsecurity.org/intell/library/reports/2007/dod-unmanned-systems-roadmap_2007-2032.pdf
https://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/
https://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/
https://bettstetter.com/uav-networking-challenges/
http://www.rcrwireless.com/20160802/europe/five-challenges-drones-tag28
http://www.rcrwireless.com/20160802/europe/five-challenges-drones-tag28

SenSys ’18, November 4–7, 2018, Shenzhen, China Carsten Herrmann, Fabian Mager, and Marco Zimmerling

[56] J. A. Preiss,W. Honig, G. S. Sukhatme, andN. Ayanian. 2017. Crazyswarm: A Large
Nano-Quadcopter Swarm. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA).

[57] Qualcomm. 2017. The path to 5G: Cellular Vehicle-to-Everything (C-V2X). https:
//www.qualcomm.com/documents/path-5g-cellular-vehicle-everything-c-v2x

[58] H. Rahul, H. Hassanieh, and D. Katabi. 2010. SourceSync: A Distributed Wireless
Architecture for Exploiting Sender Diversity. In Proceedings of ACM SIGCOMM.

[59] C. Roest. 2015. Enabling the Chaos Networking Primitive on Bluetooth LE. Master’s
thesis. TU Delft.

[60] F. B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. Comput. Surveys 22, 4 (1990).

[61] M. Schuß, C. A. Boano, M. Weber, and K. Römer. 2017. A Competition to Push the
Dependability of Low-Power Wireless Protocols to the Edge. In Proceedings of the

International Conference on Embedded Wireless Systems and Networks (EWSN).
[62] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry.

2004. Kalman Filtering With Intermittent Observations. IEEE Transactions on
Automatic Control 49, 9 (2004).

[63] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler. 2005. Exploiting the
Capture Effect for Collision Detection and Recovery. In Proceedings of the 2nd
IEEE Workshop on Embedded Networked Sensors (EmNets).

[64] M. Wilhelm, V. Lenders, and J. B. Schmitt. 2014. On the Reception of Concurrent
Transmissions in Wireless Sensor Networks. IEEE Transactions on Wireless
Communications 13, 12 (2014).

[65] D. Yuan and M. Hollick. 2013. Let’s Talk Together: Understanding Concurrent
Transmission in Wireless Sensor Networks. In Proceedings of the 38th IEEE Con-
ference on Local Computer Networks (LCN).

158

https://www.qualcomm.com/documents/path-5g-cellular-vehicle-everything-c-v2x
https://www.qualcomm.com/documents/path-5g-cellular-vehicle-everything-c-v2x

	Abstract
	1 Introduction
	2 Overview
	2.1 Basic Operation and Terminology
	2.2 Design Challenges
	2.3 Phases within a Mixer Round

	3 Design
	3.1 Core Architecture
	3.2 Processing Layer
	3.3 Transport Layer
	3.4 Efficient Runtime Operation

	4 Implementation
	5 Evaluation
	5.1 Performance
	5.2 Network Dynamics: Node Failures
	5.3 Network Dynamics: Node Mobility
	5.4 Potential of Faster CPUs and PHYs

	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

