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ABSTRACT

Careful energy management is a prerequisite for long-term, unat-
tended operation of solar-harvesting sensing systems. We observe
that in many applications the utility of sensed data varies over time,
but current energy-management algorithms do not exploit prior
knowledge of these variations for making better decisions. This
paper presents PreAct, the first energy-management algorithm
that exploits time-varying utility to optimize application perfor-
mance. PreAct’s design combines strategic long-term planning
of future energy utilization with feedback control to compensate
for deviations from the expected conditions. We implement Pre-
Act on a low-power microcontroller and compare it against the
state of the art on multiple years of real-world data. Our results
demonstrate that PreAct is up to 53 % more effective in utilizing
harvested solar energy and significantly more robust to uncertain-
ties and inefficiencies of practical systems. These gains translate
into an improvement of 28 % in the end-to-end performance of a
real-world application we investigate when using PreAct.

CCS CONCEPTS

• Computer systems organization → Sensor networks; Sen-
sors and actuators; Embedded software.

KEYWORDS

Energy management, Energy allocation, Energy harvesting, Dy-
namic power management, Solar power, Energy prediction

ACM Reference Format:

Kai Geissdoerfer, Raja Jurdak, Brano Kusy, and Marco Zimmerling. 2019.
Getting More Out of Energy-harvesting Systems: Energy Management un-
der Time-varying Utility with PreAct. In The 18th International Conference

on Information Processing in Sensor Networks (co-located with CPS-IoT Week

2019) (IPSN ’19), April 16–18, 2019, Montreal, QC, Canada. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3302506.3310393

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IPSN ’19, April 16–18, 2019, Montreal, QC, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6284-9/19/04. . . $15.00
https://doi.org/10.1145/3302506.3310393

1 INTRODUCTION

As wireless sensing systems transition from research to industry
long-term, unattended operation becomes paramount to their suc-
cess. In many scenarios, solar energy harvesting is a viable approach
for battery-supported sensing devices. An essential component of
these systems is an energy-management algorithm that dynami-
cally adjusts the application duty cycle so that the energy consumed
does not exceed the energy harvested, known as energy neutrality.
Motivation. In many applications, the sensing events of interest
are not uniformly distributed over time. For example, ecosystem
restoration uses microclimate data to infer ecosystem health and
to predict restoration success [19]. An important microclimate pa-
rameter is soil moisture dynamics, whose utility for the application
is high after rainfalls and low otherwise. An energy-harvesting
sensing system should exploit the prior knowledge of the seasonal
cycles of rainfall to conserve energy when utility is low so that
more energy is available when utility is high.

However, current energy-management algorithms do not take
advantage of this opportunity. Reactive algorithms adjust the appli-
cation duty cycle in response to deviations of the battery’s state of
charge (SoC) from a target SoC [20, 33]. This couples the duty cycle
with the harvested energy: The system consumes energy when
it becomes available, regardless of whether utility is high or low.
Predictive algorithms, on the other hand, try to reduce variations in
application duty cycle by forecasting energy availability and using
the battery as temporary energy storage [5, 6]. In doing so, these
algorithms implicitly assume that utility is constant over time.
Contribution and road-map. This paper presents PreAct, a new
energy-management algorithm that exploits prior knowledge of an
application’s time-varying utility. In PreAct, users specify utility
as a function of time whose values range from 0 (lowest utility) to 1
(highest utility). Based on predictions about future harvested energy
and feedback on the battery’s current SoC, PreAct dynamically
determines the optimized application duty cycle that satisfies the
utility specification under the given battery capacity constraints.

This paper makes the following conceptual contributions:
• We introduce the concept of time-varying utility for long-
term solar energy-harvesting systems. Sec. 2 proposes an
intuitive specification in the form of a time-dependent utility
function, and describes how an application should utilize
energy over time to satisfy a given utility function under

https://doi.org/10.1145/3302506.3310393
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energy-neutrality and battery-capacity constraints. This in-
cludes the definition of effectiveness, a new metric that we
introduce to capture how well energy utilization and utility
function match up. We specify the corresponding optimiza-
tion problem that only a clairvoyant could solve offline with
full knowledge of all future system states.

• We design PreAct, the first online energy-management al-
gorithm that approximates the optimal offline solution in the
face of real-world uncertainties, such as weather, charging
inefficiencies, and self-discharge. As detailed in Sec. 3, Pre-
Act combines strategic planning to maximize effectiveness
with feedback control to automatically compensate for devi-
ations from the predicted conditions. In this way, PreAct
essentially integrates the benefits of predictive and reactive
algorithms into a novel solution that exploits time-varying
utility to achieve a significantly better system performance.

Sec. 4 describes our prototype implementation of PreAct on the
TI MSP432P401R platform, which comes with an ARM Cortex-M4F
microcontroller unit (MCU) running at 48 MHz clock rate. We then
evaluate PreAct on eleven years of real-world solar traces from
all major climate zones in Sec. 5 and on two years of data from a
real-world application, monitoring soil moisture dynamics for mine
rehabilitation, in Sec. 6. Our key findings are as follows:

• The energy and processing overhead of PreAct is negligible
in practice: One execution of PreAct on the MSP432P401R
takes on average 6.0ms and consumes on average 85.3 µJ.

• PreAct achieves an improvement of up to 53 % in effective-
ness compared with the state-of-the-art energy-management
algorithms LT-ENO [6] and ENO-MAX [33].

• Even without prior knowledge of time-varying utility, Pre-
Act outperforms the state of the art as it can better cope
with battery capacity constraints as well as real-world uncer-
tainties and inefficiencies. For example, the effectiveness of
LT-ENO degrades by up to 58 % under unexpected conditions,
whereas PreAct maintains the same high performance.

• PreAct’s higher effectiveness translates into 28 % lower re-
construction error of soil water content dynamics in our
real-world case study. This also validates the faithfulness of
the effectiveness metric to application-level performance.

In light of our contributions, we review related work in Sec. 7,
and end the paper in Sec. 8 with brief concluding remarks on the
scope of PreAct and possible directions for future work.

2 A CASE FOR TIME-VARYING UTILITY

We argue that in many sensing applications the events of interest
are not uniformly distributed over time. Rather the utility of sensed
data varies over time, and domain experts can identify at least
coarse-grained periods of low and high utility. We are the first to
demonstrate that such prior knowledge can be exploited by an
energy-management algorithm to increase the application-level
performance of long-term solar energy-harvesting systems.
Motivating examples. As mentioned above, the utility of moni-
toring soil-moisture dynamics is clearly high after rainfall events
and low otherwise [19]. Although individual rainfall events are
difficult to predict, the likelihood of rainfall increases during wet
seasons, which exhibit a distinct periodicity that is well known from

Table 1: Key terms used in the description.

Term Description
u(n) User-defined utility
e
h
(n) Harvested energy

ê
h
(n) Predicted harvested energy

soc(n) Battery’s state of charge
soc

∗(n) Ideal state of charge
soct (n) Target state of charge
e
util

(n) Energy utilization
e∗
util

(n) Ideal energy utilization
c
bat

Battery capacity

past observations. Another example is biodiversity monitoring in
the rainforest, where most areas experience flooding from April
to September [27]. During this period, little activity is expected
from land-based animals that move to higher ground. Similarly,
avalanche forecasting based on snow-level monitoring has high
utility only from October to April in the northern hemisphere [12].
Utility function. For a domain expert, an intuitive way to specify
utility is in the form of a utility function u(n) with values ranging
from 0 (lowest utility) to 1 (highest utility). If no prior knowledge
about time-varying utility is available, or if the utility is expected
to be constant over time, the utility function u(n) can be set to any
constant value 0 < u(n) ≤ 1. The index n represents an application-
specific time period, such as hour, day, or week. Table 1 lists these
and other key terms we use in the description.

As an illustrative example, Fig. 1a plots the utility function u(n)
and the daily harvested solar energy e

h
(n) over one year for an

application with a seasonal utility pattern, like the soil-moisture dy-
namics application. The utility function u follows a seasonal trend:
it is low from day 100 to day 250 and high otherwise. The harvested
energy e

h
follows the opposite trend and exhibits weather-related

short-term variations.
Ideal energy utilization. The application performance of an
energy-harvesting sensing system depends on its duty cycle. The
duty cycle can be controlled in software and relates to application-
specific parameters such as wake-up interval, sampling rate, etc.
Thus, an energy-management algorithm determines both the en-
ergy utilization and the resulting application performance by dy-
namically adjusting the duty cycle at runtime.

Ideally, to maximize application performance, we want the en-
ergy utilization to be proportional to the user-defined utility func-
tion. We thus define the ideal energy utilization

e∗
util

(n) = k · u(n) (1)

To satisfy the energy-neutrality condition, the average energy
utilization of the system must be equal to the average amount
of harvested energy in the long run (i.e., ē∗

util
= ēh ). With this

requirement in mind, the constant k in (1) is given by k = ēh/ū.
The dashed curve in Fig. 1b shows the ideal energy utilization that
corresponds to the utility function shown in Fig. 1a.

Using the battery as temporary storage, the system may sustain
a high duty cycle also when the currently harvested energy is low.
However, the amount of energy that can be stored is limited by the
capacity of the battery c

bat
. Looking at the example in Fig. 1a, where
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(c) Battery capacity cbat and progression of ideal SoC soc∗(n) and
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Figure 1: Example scenario illustrating the problem of long-

term energy management under time-varying utility.

utility function and energy availability are misaligned, we observe
in Fig. 1c that the ideal energy utilization e∗

util
would require an

ideal SoC soc
∗ that is larger than the battery capacity. This indicates

that the ideal energy utilization is not always feasible.
Effectiveness metric. To quantify how well a feasible energy uti-

lization e
util

(n) matches up with the ideal energy utilization e∗
util

(n)
over a given time period i ≤ n ≤ j, we introduce a new metric
called effectiveness as follows:

eff (i, j) =

∑j
n=i min

(
e
util

(n), e∗
util

(n)
)

∑j
n=i e

∗
util

(n)
(2)

Effectiveness is 0 if no energy is utilized, and 1 if the utilized
energy is always at least as high as the ideal utilization. The shaded
area in Fig. 1b shows the proportion of utilized energy e

util
that

contributes to effectiveness over the one-year period in our example
scenario. As the plot shows, the effectivenessmetric does not reward

Utility function

Target SOC

calculation

Application

Battery

Energy source

Harvesting

circuit

Energy 

prediction

PREACT

information
energy

SOC control

Figure 2: Architecture of PreAct. Given a user-defined utility

function and long-term predictions of future harvested energy, PreAct

periodically determines the application duty cycle that maximizes

effectiveness under the given battery capacity constraints.

over-provisioning (e.g., from day 100 to day 250) because any excess
energy would be better spent during periods of higher utility.

The effectiveness metric is application-agnostic and thus allows
for a generic treatment of the energy-management problem under
time-varying utility. Nevertheless, our evaluation results in Sec. 6
indicate that it strongly correlates with the performance metrics of
real-world sensing applications.
Optimization problem. The problem of energy management for
a given utility function u(n) and battery capacity c

bat
can be for-

mulated as a constrained optimization problem: For any period n,
i ≤ n ≤ j, find the application duty cycle dc(n) that maximizes ef-

fectiveness eff (i, j) under the constraint that the battery’s SoC soc(n)
never exceeds the battery capacity c

bat
.

With full knowledge of future harvested energy, a solution to
this problem can be found using standard optimization methods.
For instance, e

util
(n) in Fig. 1b is an optimized energy utilization

for the utility function u(n) and energy availability e
h
(n) shown in

Fig. 1a subject to the battery capacity c
bat

in Fig. 1c. This optimized
energy utilization has an effectiveness of 85 %, while current energy-
management algorithms [6, 33] would only achieve an effectiveness
of 62 % in the example scenario. Thus, the concept of time-varying
utility we propose here enables significant improvements.
The need for an online algorithm. However, to harness these
performance gain in practice, an online algorithm that approximates
the offline solution to the above optimization problem is needed.
This is because (i) future energy availability can only be predicted
with limited accuracy, (ii) energy-harvesting systems are subject
to various real-world effects and uncertainties like temperature-
dependent charging efficiencies and battery self-discharge, and (iii)
solving the high-dimensional optimization problem on a resource-
constrained MCU is either infeasible or incurs high overhead. We
next present an online algorithm that addresses these challenges.

3 PREACT

This section describes the design of PreAct,1 a new energy-man-
agement algorithm that exploits prior knowledge about an appli-
cation’s time-varying utility to optimize the performance of solar
energy-harvesting systems.

1https://preact.nes-lab.org/

https://preact.nes-lab.org/
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3.1 Overview

Fig. 2 shows the main parts of PreAct and how they interact with
the other components of an energy-harvesting sensor node. PreAct
takes as input a utility function defined by the user and long-term
predictions of future harvested energy. It outputs the duty cycle of
the application so that effectiveness is maximized under the given
battery capacity constraints. Although PreAct determines the duty
cycle, the application has full control over how, when, and for what
to use this “budget,” such as periodically reading out sensors and
wireless communication when an interesting event has been sensed.

During system operation, PreAct executes with a certain period.
In the following, we assume a period of one day. This matches
the diurnal pattern of solar energy and is practical for many ap-
plications, but other periods are possible. Given a period of one
day, PreAct executes at the end of every day and performs two
consecutive steps:

1) compute the target SoC for the next day based on the utility
function and the predicted harvested energy;

2) use a controller to determine the application duty cycle for
the next day based on the computed target SoC and feedback
about the battery’s current SoC.

Steps 1) and 2) represent the Predictive and reActtive elements
PreAct combines to form an effective, yet highly robust energy-
management algorithm. Its effectiveness stems from the strategic
planning in step 1) based on expected conditions. Its robustness
stems from step 2) that compensates for any deviations between
expected and actual conditions. Such deviations are inevitable in
practice and may be due to a variety of different factors, including
inaccurate predictions of future harvested energy, uncertainty in
the energy consumed by the application, battery self-discharge, etc.
PreAct implicitly compensates for any such factors, which makes
it highly robust and widely applicable in real systems.

Before delving into the details of PreAct concerning steps 1)
and 2), we briefly outline the existing approach we use to obtain
long-term predictions of future harvested energy.

3.2 Prediction of Harvested Energy

Similar to prior long-term energy-management algorithms [5, 6],
we use the model-based approach of Buchli et al. [7]. To the best of
our knowledge, it is the only lightweight approach that does not
require Internet connectivity or additional sensors.

According to the astronomical model in [7], the energy harvested
on day n can be predicted by

ein(n) = A
panel

· η
panel

· ηcc · ghi(doy,φ, λ,Ω) (3)

where A
panel

is the solar panel size, η
panel

is the efficiency of the
panel, and ηcc is the efficiency of the charge controller. The last term
in (3) denotes the amount of energy arriving on a plane surface,
called global horizontal irradiance (GHI), which is a function of the
day of the year doy, the position on earth specified by latitude φ and
longitude λ, and a parameter Ω that accounts for environmental
conditions.

To compensate for deviations from the expected conditions, the
approach scales the predictions by comparing historical values of
actual harvested energy e

h
to the corresponding predictions ein

0 50 100 150 200 250 300 350
Time [day]

0.00

0.25

0.50

0.75

E
ne

rg
y

[W
h]

eh

êh

Figure 3: A real trace of daily harvested energy eh and the

corresponding one-year-ahead prediction êh.

obtained via (3) over the pastM days:

ê
h
(n + i) =

∑M
j=1 eh(n − j)∑M
j=1 ein(n − j)

· ein(n + i) (4)

Using (4) we can provide PreAct with predictions of the energy
harvested on any future day n + i , i ≥ 1, where n is the current day.

As an example, Fig. 3 shows a real trace of daily harvested en-
ergy over the course of one year and the corresponding one-year-
ahead prediction obtained via (4) for i = 1, . . . , 365. The prediction
faithfully approximates the mean harvested energy and follows the
seasonal trend. This facilitates strategic planning, as described next.

3.3 Computation of Target SoC

When PreAct executes at the end of each day, it leverages the one-
year-ahead prediction of harvested energy to compute the target
SoC for the next day. The objective is tomaximize effectiveness with
respect to the user-defined utility function under the given battery
capacity constraints. The procedure consists of the following steps:

• compute the ideal SoC soc
∗(n + i) for i = 1, . . . , 365 that

results from harvesting the predicted energy ê
h
(n + 1) and

consuming the ideal energy e∗
util

(n + i) given by (1) from the
current day n up to one year into the future;

• adjust the computed ideal SoC to satisfy the battery capacity
constraints and to avoid wasting harvested energy because
of a flat or fully charged battery.

The target SoC for the next day is then given by the first data point
of the adjusted ideal SoC, namely soct (n+1). We describe both steps
in more detail below.
Compute ideal SoC. To compute the ideal SoC for all future days
n + i , i = 1, . . . , 365, we exploit the fact that, for an ideal battery, the
SoC at the end of day n + 1 is given by the sum of the SoC at the
end of day n and the difference between the harvested and utilized
energy on day n + 1:

soc(n + 1) = soc(n) + e
h
(n + 1) − e

util
(n + 1) (5)

We can iteratively apply this expression to compute the SoC at
any future day. Note that the above reasoning assumes an ideal bat-
tery; any non-idealities (self-discharge, aging effects, etc.) are com-
pensated by PreAct’s feedback controller, as described in Sec. 3.4.

Since we are interested in the ideal SoC, we replace e
util

with
the ideal energy utilization e∗

util
from (1) and e

h
with the predicted
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harvested energy ê
h
from (4):

soc
∗(n + i) = soc

∗(n) +
i∑
j=1

(
ê
h
(n + j) − e∗

util
(n + j)

)
(6)

The only unknown in (6) is the initial value of the ideal SoC soc
∗(n),

which we determine below. Revisiting our example scenario from
Sec. 2, we plot in Fig. 4 the progression of the ideal SoC for an initial
value of soc∗(n) = 0.
Adjust ideal SoC. To check whether the ideal SoC from (6) ex-
ceeds the battery capacity constraints throughout the one-year
horizon, we compute the resulting peak-to-peak amplitude, which
is independent of the initial value of soc∗(n), as follows:

Asoc
∗ = max

1≤i≤365
(soc∗(n + i)) − min

1≤i≤365
(soc∗(n + i)) (7)

Fully discharging a battery can cause irreversible damage and
modern battery-management circuits therefore disconnect the load
when the voltage drops below a certain threshold. Therefore, 0 ≤

soc ≤ c
bat

refers to the practically usable portion of the battery. If
the peak-to-peak amplitudeAsoc

∗ is larger than the battery capacity
c
bat

, we need to scale the ideal SoC by c
bat
/Asoc

∗ to satisfy the
battery capacity constraints:

soct (n + i) =
{ cbat
A
soc

∗
· soc∗(n + i) if Asoc

∗ > c
bat

soc
∗(n + i) otherwise

(8)

Using (8) PreAct can compute the target SoC soct (n + i) for
any day in the one-year horizon (i.e., for i = 1, . . . , 365), where the
ideal SoC soc

∗(n + i) is given by (6). The only missing piece is the
initial value soc∗(n). To compute it, we again assume it to be 0 when
applying the following expression:

soc
∗(n) =


− min

1≤i≤365
(soct (n + i)) if Asoc

∗ ≥ c
bat

− min
1≤i≤365

(soct (n + i)) + c
bat

−Asoc
∗

2 otherwise
(9)

The reasoning behind (9) is as follows: If the amplitude of the target
SoC is equal to the battery capacity, we set the initial value so that
it ranges exactly between the battery capacity limits 0 and c

bat
over

the one-year horizon. This can be seen by looking at the target SoC
shown in Fig. 5 for our example scenario. Otherwise, the initial
value given in (9) ensures maximum safety margins between the
target SoC and the battery capacity limits.

PreAct uses the above procedure to strategically plan one year
in advance, which is essential to maximize effectiveness under the

0 50 100 150 200 250 300 350
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−20
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20

40

E
ne

rg
y
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so
c∗

(n
)

Battery Capacity Limits soct(n + i)

Figure 5: The initial value of the ideal SoC soc∗(n) is deter-
mined such that the target SoC takes only values between 0

and cbat with maximum safety margins to these limits.

given battery capacity constraints. Nevertheless, it only feeds the
target SoC of the next day soc∗(n + 1) into the SoC controller, which
is detailed in the next section. This approach is conceptually similar
to finite-horizon optimization used in model-predictive control.

3.4 SoC Controller

The task of PreAct’s controller is to compute the application duty
cycle that yields the target SoC by the end of the next day when
it executes again. This is non-trivial because the relation between
application duty cycle and energy consumption is complex and
difficult to capture accurately. Further, the harvested energy on the
next day may differ from the prediction due to unexpected weather
conditions, and a battery’s SoC is subject to real-world effects like
temperature-dependent charging efficiencies, self-discharge, etc.

As a natural solution, we use a proportional-integral-derivative
(PID) controller that automatically compensates for such effects.
Specifically, using feedback in form of the measured SoC of the
battery soc(n), the controller predicts the control error at the end of
the next day with respect to the target SoC soct (n + 1) as follows:

ed = (soc(n) + ê
h
(n + 1) − soct (n + 1)) /c

bat
(10)

The first sum extrapolates the SoC on the next day based on the pre-
dicted harvested energy, and the divider decouples the magnitude
of the control error from the battery capacity.

Using the current control error ed given by (10), the sum of all
previous and the current control error, and the change in control
error since the last execution of PreAct, the controller computes
the current control output ϕ(n) via

ϕ(n) =
[
Kp · ed (n) + Ki ·

n∑
0
ed (i) + Kd · (ed (n) − ed (n − 1))

]
(11)

The PID coefficients Kp , Ki , and Kd in (11) can be determined
using established methods; for example, we use the Nelder-Mead
method [24] in the evaluation of PreAct in Sec. 5.

Finally, we need to ensure that the application duty cycle takes
only values between 0 and 1:

dc(n + 1) =


0 if ϕ(n) < 0
1 if ϕ(n) > 1
ϕ(n) otherwise

(12)

PreAct sets the application duty cycle to dc(n + 1) given by (12)
until it executes again at the end of the next day.
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4 IMPLEMENTATION

We prototype PreAct on the TI MSP432P401R platform, which
features an ultra-low-power 32-bit ARM Cortex-M4F MCU with a
floating-point unit running at 48 MHz clock rate. For comparison,
we also implement two state-of-the-art energy-management algo-
rithms, LT-ENO [6] and ENO-MAX [33], on the same platform (see
Sec. 5.1.1 for a detailed description of the configuration parameters
of the three algorithms). Our implementations use only standard
libraries and consist of 51 (ENO-MAX), 156 (PreAct), and 159 (LT-
ENO) lines of C++ code. Using gcc 6.3.1 with optimization level
-O3, the compiled code of the algorithms has a memory footprint of
0.67 kB–1.8 kB in flash and 0.06 kB–1.8 kB in RAM (without stack).

5 EVALUATION

We evaluate and compare PreAct to the state-of-the-art algorithms
LT-ENO [6] and ENO-MAX [33] on a large dataset of 11 years of
real solar radiation traces. Our main research questions are:

• What is the runtime overhead when executing the energy-
management algorithms on a real sensor node? (Sec. 5.2)

• How well can the algorithms adapt to different application-
dependent system dimensions in terms of harvestable solar
energy and available battery capacity (Sec. 5.3)

• To what extent is the performance affected by the alignment
between utility function and harvested energy? (Sec. 5.4)

• How robust are the algorithms to real-world inefficiencies
and uncertainties of energy-harvesting systems? (Sec. 5.5)

This part of our evaluation is complemented by a real-world case
study in Sec. 6 that evaluates the performance gains of PreAct
over the state of the art in terms of an application-level metric.

5.1 Experimental Setup and Methodology

5.1.1 Setup and Approach. As shown in Fig. 6, the experimental
setup consists of a TI MSP430P401R-based sensor node and a PC,
connected to each other via UART. The sensor node executes the
energy-management algorithm (i.e., our implementation of PreAct,
LT-ENO, or ENO-MAX) and the energy prediction (only LT-ENO
and PreAct). On the PC runs a trace-based simulator that takes
a real solar radiation trace as input and accounts for all major
components of a solar energy-harvesting system (panel, harvesting
circuit, battery, etc.) and their non-idealities. For each day n in
the solar trace, the simulator determines the energy harvested on
that day e

h
(n) and the SoC at the end of that day soc(n). Based on

these two inputs, the sensor node executes the energy-management

Table 2: The five locations from which we use 11 years of

real solar radiation data for our evaluation.

Location Climate Zone Latitude [°] Longitude [°]
Mamirauá A -2.2 -65.7
Alice Springs B -23.6 133.9
Berlin C 52.5 13.4
Harbin D 45.8 126.5
Ivujivik E 62.4 -77.19

algorithm to compute the application duty cycle for the next day
dc(n + 1), and informs the trace-based simulator accordingly. This
process repeats for each day in the solar trace.

We note that our evaluation approach goes far beyond the one
that has been used by previous work on long-term energy man-
agement for solar energy-harvesting systems. Similar to previous
work, we also use trace-based simulations to enable a fair compar-
ison of different algorithms, and consider multiple years of real
solar radiation data from different climate zones to be able to draw
meaningful conclusions; these two evaluation goals are extremely
difficult to achieve in a real deployment. On top of that, however,
(i) we are the first to actually implement and execute the energy-
management algorithms on a real sensor node to evaluate their
runtime overhead, and (ii) we simulate several real-world effects
whose impact on performance has been neglected by previous
work [5, 6, 17, 33], including inaccurate SoC estimations, battery
aging, and self-discharge.

In the following, we describe the solar traces, utility functions,
algorithms, and performance metrics we use. Afterward, we detail
the implementation of the trace-based simulation.

5.1.2 Real Solar Radiation Traces. We select the five locations listed
in Table 2 to reflect all fivemajor climate zones according to [25]. For
each location, we use the daily average global horizontal irradiance
over an 11-year period (1989 to 1999). The data were obtained from
the NASA Langley Research Center Atmospheric Science Data
Center Surface Meteorological and Solar Energy (SSE) web portal
supported by the NASA LaRC POWER Project [10].

5.1.3 Utility Functions. We consider three utility functions:
• Uniform matches applications with a time-invariant utility
or with a utility that has unknown temporal variations.

• Seasonal, shown in Fig. 9, is representative of applications
with a seasonal utility pattern, such as environmental moni-
toring. Here, utility may be high during a contiguous portion
of the year and low during the remainder of the year.

• Weekends, shown in Fig. 10, matches the typical weekly rou-
tine of humans. For example, the utility of an application like
beach water quality monitoring may be high on Saturday
and Sunday but low on the other (working) days of the week.

5.1.4 Compared Algorithms. Besides PreAct, we have evaluated
four state-of-the-art energy-management algorithms, two predic-
tive [6, 17] and two reactive [20, 33] approaches. Below, we present
results for the best algorithm from each of the two classes.

• LT-ENO is the state-of-the-art predictive approach for so-
lar energy-harvesting systems and assumes a time-uniform
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utility [6]. Based on the energy-prediction algorithm from
Sec. 3.2, it dynamically determines a stable duty cycle that
allows for fully charging the battery during times of energy
surplus to sustain operation during times of energy deficit.
To this end, LT-ENO relies on a well-dimensioned battery
determined according to a capacity planning method [6].
We use this method to allow for a fair comparison. Further,
as recommended by the authors, we use a window size of
M = 63 for the dynamic scaling of the solar predictions.

• ENO-MAX is the best known reactive method for long-term
energy management. It uses a control algorithm to deter-
mine the application duty cycle based on the battery capacity
and the current SoC such that energy-neutral operation is
achieved over a configurable time frame. We set α = 1/180
(targeting energy-neutral operation over 180 days), which
performed best in our evaluation. To reduce duty cycle vari-
ance, the controller output is passed through an exponen-
tially weighted moving average filter with parameter β . We
follow the authors’ suggestion and set β = 0.25.

• PreAct is the new energy-management algorithm described
in Sec. 3. Its ability to follow a given utility function depends
on the PID coefficients. We fit one set of PID coefficients to
each of the three utility functions using the Nelder-Mead
method [24], and use them throughout the evaluation. Pre-
Act’s only other parameter is the window size M for the
solar predictions: we useM = 63 as for LT-ENO.

LT-ENO requires a known linear relation between duty cycle
and energy consumption of the application. We consider

e
util

(n) = emax

h
· dc(n) (13)

This models an application that consumes energy proportional to
the duty cycle, where a duty cycle of 1 corresponds to consuming
the maximum energy emax

h harvested on a single day during the
11-year period captured by a given solar trace in our data set.

5.1.5 Performance Metrics. We evaluate the overhead in terms of
the time and energy needed for one algorithm execution on the TI
sensor platform (i.e., overhead per day). We measure the execution
time with an oscilloscope by toggling a GPIO pin on the target MCU
and the energy consumption using TI’s EnergyTrace method for a
constant supply voltage of 3.3 V. For a given utility function and
solar radiation trace, we report the performance of an algorithm in
terms of its effectiveness computed over the entire trace using (2).

5.1.6 Simulator Details. We implement the trace-driven simula-
tor in about 700 lines of Python code. It simulates a solar energy-
harvesting system consisting of a solar panel, a harvesting circuit,
a lithium-ion battery, and an application that utilizes energy ac-
cording to (13). Given a solar radiation trace as input, the simulator
scales the amount of harvestable energy according to the panel
size, the panel efficiency, and the efficiency of the harvesting cir-
cuit. We model a modern harvesting integrated circuit that can
drive a load directly from harvested energy and can charge the
battery with excess energy. The amount of harvested energy and
the current SoC of the battery are measured and provided to the
energy-management algorithm. If the battery is fully charged and
the application draws less power than what could be supplied, then
no energy is harvested. We consider a solar panel with an area of

25 cm2 and an efficiency of 5 % [14]. The harvesting circuit works
with an efficiency of 70 % [32]. Further, the system and the battery
operate at a constant voltage of 3.3 V, and the initial SoC is 50 %.

Moreover, our simulator accounts for all major sources of ineffi-
ciency and uncertainty in a real energy-harvesting system:

• Charging efficiency: Lithium-ion batteries have charging and
discharging efficiencies of 90 % or higher depending on tem-
perature and current [16, 21]. We therefore scale the energy
that flows into and out of the battery by 0.9.

• Capacity degradation: Several studies suggests that battery
calendar aging is significant over the course of multiple
years, causing the capacity of common lithium-ion batteries
to decrease by 1 %–8 % per year [11, 18]. To account for aging
effects, we decrease the battery capacity by a fixed amount
each day that corresponds to an annual degradation of 5 %.

• Self-discharge: Self-discharge is typically modeled as a con-
stant leakage current [17] or an average percentage of
SoC [15]. We adopt the model of a constant energy loss
proportional to the SoC and decrease the SoC by a fixed
percentage each day, corresponding to a self-discharge of
3 % in SoC per month [30].

• SoC uncertainty: Obtaining precise measurements of the bat-
tery’s SoC is difficult; for example, voltage-only SoC estima-
tors achieve an accuracy of 95 % [4]. We model SoC uncer-
tainty using soc(n) · (1 + ϵ), where ϵ is measurement noise
and normally distributed with mean 0.03 and variance 0.02.

• Consumption uncertainty: Similarly, it is difficult to accurately
predict the application’s energy consumption based on the
duty cycle. In Global Positioning System (GPS) tracking, for
example, the time to get a fix depends on the satellite constel-
lation and other factors that are hard to predict. Wemodel en-
ergy consumption uncertainty using e

util
(n) · (1 + γ ), where

e
util

(n) is given by (13) and the uncertainty γ is normally
distributed with mean -0.05 and variance 0.05.

Whenever we refer to the ideal model below, these five real-world
effects do not influence the simulated amount of harvested energy
during a day e

h
(n) and the simulated SoC at the end of a day soc(n).

5.2 Run-time Overhead

We start by looking at the runtime overhead of our prototype im-
plementations of the three energy-harvesting algorithms.

Finding: PreAct and the two comparison algorithms have a neg-

ligible overhead in terms of energy consumption and execution time.

Settings.We feed our evaluation framework with the solar trace
fromHarbin, which features both seasonal (long-term) and weather-
related (short-term) variations. We perform one run over the entire
trace for each algorithm, and measure execution time and energy
consumption per algorithm execution on the sensor node.
Results. Table 3 lists the average execution time and the average en-
ergy consumption per execution of the three energy-management
algorithms. We see that, although PreAct has the largest overhead,
the 85.3 µJ it consumes (per day) is still negligible, considering that
this is less than 0.001 % of the energy harvested on any day in our
solar traces. The execution times are on par with the transmission
time of a single packet using a low-power IEEE 802.15.4 radio. We
thus conclude that all three algorithms have negligible overhead.
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Table 3: Average execution time and average energy con-

sumption for one execution of PreAct, LT-ENO, and ENO-

MAX on the TI MSP430P401R platform. The overhead (per day)

of all three energy-management algorithms is negligible in practice.

Algorithm Execution Time [ms] Energy Consumption [µJ]
PreAct 6.0 85.3
LT-ENO 3.2 43.6
ENO-MAX 0.8 9.7
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Figure 7: Effectiveness of PreAct, LT-ENO, and ENO-MAX

for different ratios of used battery capacity to planned bat-

tery capacity. PreAct performs well across a wide range of system

dimensions, achieving 35 % higher effectiveness in some cases.

5.3 Impact of System Dimensioning

The ability to exploit the battery as temporary energy storage
for realizing a certain energy utilization depends on the ratio of
harvested energy to available battery capacity. In practice, however,
the battery capacity and solar panel size are often constrained or
predefined by the application scenario and the available hardware.

Finding: Unlike LT-ENO and ENO-MAX, PreAct performs well

for a wide range of battery capacity constraints and achieves up to

35 % higher effectiveness than the two state-of-the-art algorithms.

Settings. To systematically evaluate this aspect, we use the ideal
model. We use again the solar data from Harbin and consider a uni-
form utility function to allow for a fair comparison against LT-ENO.
To test different ratios of harvested energy to available capacity,
we fix the panel size and vary the battery capacity. Using the capac-
ity planning method employed by LT-ENO [6], we determine the
planned capacity (7500 mAh). Then, we determine five used capaci-
ties that correspond to 0.1×, 0.5×, 1×, 2×, and 10× of the planned
capacity, and simulate each algorithm for these five capacities.
Results. Fig. 7 plots the effectiveness of the three algorithms for the
five ratios of used capacity to planned capacity. We see that PreAct
performs well across all ratios, whereas LT-ENO and ENO-MAX
perform poorly for certain ratios. In fact, PreAct’s effectiveness

Table 4: Alignment between utility function and harvested

energy. A value of 100 % means that the two are perfectly aligned.

Function Mamiraua Alice Springs Berlin Harbin Ivujivik
Uniform 88.7 % 88.0 % 69.8 % 79.2 % 61.2 %
Seasonal 63.4 % 71.3 % 35.1 % 46.5 % 26.2 %
Weekends 81.0 % 81.3 % 67.3 % 75.8 % 59.8 %

consistently ranges between 82 % and 98 %, which is in some cases
35 % higher than the effectiveness of LT-ENO and ENO-MAX.

A closer look at the results in Fig. 7 reveals that LT-ENO under-
performs for under-dimensioned capacity. In this case, the battery
is fully charged most of the time, so LT-ENO cannot benefit from
times of energy surplus. ENO-MAX, instead, takes the battery ca-
pacity into accounts and is therefore able to compromise between
providing a uniform duty cycle and keeping the SoC within limits.
PreAct’s ability to compromise between realizing the ideal energy
utilization in the long run versus immediately spending the har-
vested energy makes for an excellent performance across a much
wider range of system dimensions.

5.4 Impact of Alignment between Utility

Function and Harvested Energy

Realizing a desired application duty cycle according to the utility
function becomes more difficult if the utility function and the en-
ergy availability in terms of harvested energy are misaligned. We
investigate next how this (mis-)alignment affects the performance
of the three energy-management algorithms.

Finding: PreAct achieves 81 %–98 % effectiveness across all align-

ments between utility function and harvested energy in our dataset,

whereas LT-ENO and ENO-MAX perform significantly worse if they

are misaligned. Overall, PreAct improves performance by up to 53 %.
Settings. We use the ideal model and additionally exclude the
effect of limited battery capacity (to be fair toward LT-ENO) by
using a battery that has 10× the planned capacity for each location.
One way to quantify the alignment between a utility function and
energy availability according to a given solar trace is to compute
effectiveness via (2) assuming that any harvested energy is directly
utilized, that is, e

util
(n) = e

h
(n) where e

h
(n) is given by (3).

Table 4 lists the alignment for all 15 combinations of utility func-
tions and solar traces in our dataset. We find the lowest value for the
seasonal utility function in Ivujivik (26.2 %) far in the north, where
energy is mainly available in summer. The highest value is found
for the uniform function in Mamiraua (88.7 %), which is close to the
equator and thus enjoys uniform energy availability throughout
the year. We test each algorithm against all 15 combinations.
Results. Fig. 8 plots effectiveness against alignment, including a
linear fit for each algorithm to better observe the trends. Looking
at the trends, we find that all algorithms generally perform better
as the alignment increases. PreAct achieves significantly higher
effectiveness than the comparison algorithms in all cases with an
alignment factor of 75 % or lower. Overall, it performs up to 53 %
and 45 % better than LT-ENO and ENO-MAX because it strategically
controls the application duty cycle to match the utility function.
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Figure 8: Effectiveness of PreAct, LT-ENO, and ENO-MAX

depending on the alignment between utility function and

harvested energy. PreAct performs well even if the alignment is

very low, outperforming LT-ENO and ENO-MAX by up to 53 %.
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Figure 9: Harvested energy, utility function, duty cycle, and

SoC over time for the combination with the lowest align-

ment in Table 4. PreAct provides a significantly higher duty cycle

when utility is high while recharging the battery when utility is low.

This behavior can be seen in Fig. 9, which plots duty cycle and
SoC over time for the combination with the lowest alignment. We
see that PreAct achieves the highest duty cycle when utility is high
while recharging the battery when utility is low—and this occurs
regardless of the considerable misalignment. In Fig. 10 we see that
PreAct is also able to follow the fine-grained weekends utility
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Figure 10: Harvested energy, utility function, duty cycle, and

SoC over time for the weekends utility function in Alice

Springs. Even though PreAct employs strategic long-term planning

to maximize effectiveness, it can follow fine-grained utility functions.

function. However, the more aggressive setting of the controller
leads to an increased sensitivity towards weather-related variations,
evident from the low duty cycle around day 10, where the harvested
energy is significantly reduced due to cloud coverage.

In most cases, LT-ENO and ENO-MAX perform similarly and the
corresponding trends have almost the same slope. ENO-MAX’s goal
is to reduce duty cycle variance, but its approach has previously
been found to be incapable of dealing with long-term variations of
solar energy [6]. In some cases, the remaining variations in ENO-
MAX’s budget coincidentally align with utility so that effectiveness
is higher than with LT-ENO.

5.5 Impact of Uncertainties and Inefficiencies

Uncertainties such as inaccurate SoC estimations and inefficiencies
like battery self-discharge are present in any real-world energy-
harvesting system. We evaluate the robustness of the three energy-
management algorithms to such effects.

Finding: PreAct is highly robust to various real-world uncertain-

ties and inefficiencies. As a result, its effectiveness is only slightly

lower than without inefficiencies, while effectiveness of LT-ENO can

be reduced by up to 58 %.
Settings. For a fair comparison against LT-ENO and ENO-MAX,
we consider the uniform utility function. Based on solar data from
Harbin, we perform several runs in which we activate none (ideal
model), all, or only one of the five sources of inefficiency and un-
certainty (see Sec. 5.1.6). To quantify the impact of each individual
effect on the performance of the three energy-management algo-
rithms, we report below the decrease in effectiveness with respect
to the ideal model (i.e., without any uncertainty or inefficiency).
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Figure 11: Decrease in effectiveness under different real-

world effectswith respect to the idealmodel, for PreAct, LT-

ENO, and ENO-MAX. PreAct is highly robust to various sources of

uncertainty and inefficiency, while LT-ENO is significantly affected.

Results. Fig. 11 shows the decrease in effectiveness of the three
algorithms under energy consumption uncertainty, charging ineffi-
ciency, capacity degradation, or self-discharge and when all effects
affect the system at the same time (combined). The decrease in
effectiveness under SoC estimation uncertainty was below 1 % for
all algorithms, so we do not show it in Fig. 11.

We find that the decrease for PreAct is very low across the
board. When combining all non-idealities, PreAct’s performance
degrades by only 3.5 %, which is on par with the 1.8 % decrease
of ENO-MAX. Both PreAct and ENO-MAX are highly robust to
inefficiencies and uncertainties thanks to the underlying feedback
control mechanism. For example, in the case of energy consumption
uncertainty, the two methods automatically adapt the application
duty cycle to the current conditions without relying on error-prone
estimates of the actual energy consumption. This robustness is a key
asset for enabling multi-year, unattended operation of solar energy-
harvesting sensing systems in which an accurate characterization
of all hardware-related effects is next to impossible.

By contrast, the performance of LT-ENO decreases by 57.9 %
when its strong assumptions are not met. This may lead to subopti-
mal performance in real-world scenarios, where future harvested
energy and system parameters cannot be accurately predicted.

6 REAL-WORLD CASE STUDY

The previous sectionmainly explored the performance of PreAct in
terms of effectiveness depending on various impact factors. We now
consider a real-world application to evaluate and compare PreAct’s
performance in terms of an actual application-level metric.

Finding: By exploiting prior knowledge of the wet season in sub-

tropical Eastern Australia, PreAct increases the performance of a mi-

croclimate sensor for mine rehabilitation by up to 28 % compared with

LT-ENO and ENO-MAX. Further, the performance of the microclimate

sensor correlates with effectiveness, which validates the faithfulness

of the effectiveness metric to application-level performance.

Application scenario. Soil moisture dynamics has been identified
as a reliable indicator of rehabilitation success of land that was used
for surface mineral extraction [28]. Using microclimate sensors that
measure soil water content, it is possible to quantify water retention
time, which is an important factor for tree growth [19]. Clearly, this
retention time is only visible in soil water after rainfall. Therefore,
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Figure 12: Reconstruction error in soil water dynamics com-

puted across all ten sensors nodes and the whole observa-

tion period, for PreAct, LT-ENO, and ENO-MAX. The plot

showsminimum,maximum,median, and 25th and 75th per-

centiles. PreAct improves the average application-level performance

by up to 28 % compared with two state-of-the-art algorithms.

measuring soil water content exhibits a distinct time-varying utility,
where utility is high when there has been rain and low otherwise.

We use data from a real deployment of ten sensor nodes in an
open-cut surface mine in Eastern Australia from 09/2012 to 07/2014.
Each sensor node measured solar radiation and soil water content
periodically every 5 min and transmitted both readings to a sink
node using its low-power wireless radio. Soil moisture dynamics is
the first derivative of the soil water content measurements reported
by the sensor nodes; it captures the rate of water discharge from
the soil, which is highly correlated with soil quality and vegetation
regrowth. Using these data as ground truth, we now evaluate the
performance of this application if the tenwireless sensor nodeswere
harvesting solar energy and taking energy-management decisions
using PreAct, LT-ENO, or ENO-MAX. The duty cycle determined
by the energy-management algorithms directly affects the rate with
which each sensor measures and reports soil water content.
Application-level metric. We quantify the application-level per-
formance using the reconstruction error, defined as themean squared
error (MSE) between the ground truth soil moisture dynamics and
the (reconstructed) soil moisture dynamics obtained when the sam-
pling rate is controlled by an energy-management algorithm.
Settings.We consider a solar panel size of 15 cm2, a battery capac-
ity of 3300 mAh, and a baseline power draw of 1 mW. The energy
consumed by a sensor node for obtaining and transmitting one soil
water content reading is 1.5 J. To specify a utility function, we note
that sub-tropical climate in Eastern Australia has a characteristic
wet season with an increased chance of precipitation. Specifically,
using data from the Australian Bureau of Meteorology [13], we
compute the utility function shown in Fig. 13 based on monthly
average rainfall of the years 2001 to 2011.
Results. Fig. 12 shows the reconstruction error computed across all
ten sensor nodes and over the whole observation period of almost
two years. We see that PreAct outperforms LT-ENO by 28 % and
ENO-MAX by 23 % in terms of average reconstruction error. The
improvements are even larger when looking at the maximum error.

Fig. 13 shows, for one of the nodes, the ground truth soil water
content measurements and the sampling rate chosen by the energy-
management algorithms. PreAct provides the highest sampling
rate of all algorithms when utility is high and most rainfall events
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Figure 13: Utility function, ground truth of soil water con-

tent measurements, and sampling rate chosen by PreAct,

LT-ENO, andENO-MAX for one of the ten deployedmicrocli-

mate sensors in our real-world case study. By exploiting prior

knowledge of the wet season through the utility function, PreAct can

sustain the highest sampling rate during and after rainfall events.

This allows for a much more accurate reconstruction of soil water

dynamics compared with LT-ENO and ENO-MAX.

occur, as visible from the spikes in soil water content. This explains
the significantly lower reconstruction error when using PreAct.

We also determine Spearman’s correlation coefficient between
the reconstruction error and the effectiveness of each algorithm
across all ten sensor nodes. We find that there is a strong correlation
of 0.62 (p = 0.0002) between the application-level metric and the
effectiveness metric, although rainfall events are hard to predict
precisely and the utility function in this example is only a rough es-
timate. This validates the usefulness of the effectiveness metric both
as an optimization objective in the design of energy-management al-
gorithms and as an application-agnostic performance metric when
evaluating and comparing energy-management algorithms.

One may think that simply increasing the sampling rate when
rainfall is detected would be a viable approach in this scenario, sim-
ilar to adaptive sampling algorithms for purely battery-powered
sensor nodes [1]. However, the system can only sustain a higher
average sampling rate during and after rainfall events if it has proac-
tively planned for this increased energy utilization during the wet
season by taking into account predictions on future harvested en-
ergy, the application’s time-varying utility, and the battery capacity
constraints. PreAct addresses this need with a novel solution that
is also highly robust if the conditions do not evolve as predicted.

7 RELATEDWORK

Reactive algorithms. Vigorito et al. consider a linear-quadratic
tracking problem, keeping the SoC at a configurable level to
avoid depletion and waste when the battery cannot store excess

energy [33]. By passing the output of the controller through a
exponentially weighted moving average (EWMA) filter, they re-
duce short-term variations of the duty cycle. We implemented this
method and found it to be adaptive and robust to non-idealities.
However, it couples system performance with seasonal energy avail-
ability, leading to underperformance when utility is misaligned.

Le et al. use a PID controller to maintain a favorable, constant
SoC [20]. By adapting the wake-up period of the node to devia-
tions from this set-point, their system achieves long-term energy
neutrality. Unlike their approach, the set-point in PreAct is time-
dependent and takes into account energy predictions and utility.

The near-optimal energy management scheme proposed in [3]
learns daily patterns of energy input and output, and optimizes
energy allocation over a 24-hour horizon. By re-distributing un-
expected surplus and deficit energy over short time intervals, the
allocated energy is close to the optimal, offline solution.

Reactive algorithms are fundamentally unable to consider time-
varying utility. PreAct borrows their key idea and combines it
with a predictive, strategical approach. This way, PreAct inherits
the advantages of reactive methods, adaptivity and robustness, yet
optimizes utilization according to a long-term objective.
Predictive algorithms. Kansal et al. propose power management
for energy-harvesting sensor networks, introducing basic terms and
outlining specific challenges [17]. Their approach to split the day
into time slots and to make predictions on them based on historical
values was adopted and refined by other researchers [8, 9, 26].
Various authors incorporated predictions of harvested energy into
short-term energy management algorithms [2, 22, 23, 29]. This
short-term approach performs sub-optimally in the long run when
application utility does not match energy availability [6].

The authors of [31] achieve short-term energy neutrality with
high robustness using a novel reward function for reinforcement
learning. They find that including short-term weather predictions
further reduces deviations from energy-neutral operation.

The authors of [5, 6] are the first to propose an optimization for a
prediction horizon corresponding to the long-term variations in the
solar energy source. After dimensioning the system according to a
capacity planning method [7], the run-time algorithm from [6] uses
a lightweight optimization procedure to iteratively determine the
duty cycle for a day to uniformly balance predicted energy input
and utilization over a one-year horizon. By contrast, PreAct allows
for a time-varying utility, and exploits this to conserve energy when
utility is low to optimize performance when utility is high.

In [5] the authors pick up on their previous work and formu-
late a model predictive control problem for guaranteed minimum
energy utilization. The method only calculates the optimized uti-
lization, without detailing, how it can be realized. The approach to
calculate a target SoC within a limited prediction horizon is similar
to our method. However, the underlying objective function and
approximation of the solution are fundamentally different.

8 DISCUSSION AND CONCLUSIONS

This paper shows how prior knowledge of the time-varying util-
ity of sensed data can be used to optimize the performance of
energy-harvesting systems. We thus presented PreAct, the first
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energy-management algorithm that takes advantage of this oppor-
tunity. PreAct exploits prior knowledge about time-varying utility
when planning future energy utilization if such knowledge is avail-
able, but significantly improves performance compared with prior
approaches even if it is not, as demonstrated by our evaluation. In
addition, PreAct reactively tracks the determined target SoC to
automatically compensate for deviations from predicted conditions.
Extensive trace-based simulations show that compared with cur-
rent long-term energy-management algorithms PreAct achieves
significantly better application performance and is also more robust
to real-world uncertainties and inefficiencies.

Finally, PreAct is versatile to fit a broad range of applications
and harvesting modalities. In this paper, we focused on solar energy
harvesting and long-term sensing applications, which are widely
adopted in real deployments. More generally, the underlying con-
cepts and PreAct’s design are applicable to other energy sources
and applications operating on different timescales as long as the
following two requirements are met:

• The incoming energy must be predictable over the planned
optimization horizon. The predictions can be rather coarse-
grained because PreAct’s feedback mechanism automati-
cally compensates for these and other inaccuracies.

• The energy storage must be large enough to compensate for
deviations between harvested energy and application utility.

For example, PreAct may be used in a health-monitoring applica-
tion with kinetic energy harvesting, where characteristic human
motion patterns and the application utility can be predicted and
future energy utilization can be optimized over a one-day horizon
using a relatively small battery. Exploring other harvesting sources,
different timescales, and other energy-storage technologies is an
interesting direction for future work. Moreover, we believe it would
be possible to provide probabilistic guarantees on PreAct’s en-
ergy neutrality and minimum application utility based on a formal
analysis that accounts for statistical properties of the energy source.
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