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Abstract—Smart manufacturing aims to overcome the limita-
tions of today’s rigid assembly lines by making the material flow
and manufacturing process more flexible, versatile, and scalable.
The main economic drivers are higher resource and cost efficiency
as the manufacturers can more quickly adapt to changing market
needs and also increase the lifespan of their production sites. The
ability to close feedback loops fast and reliably over long distances
among mobile robots, remote sensors, and human operators is a
key enabler for smart manufacturing. Thus, this article provides
a perspective on control and coordination over wireless networks.
Based on an analysis of real-world use cases, we identify the main
technical challenges that need to be solved to close the large gap
between the current state of the art in industry and the vision of
smart manufacturing. We discuss to what extent existing control-
over-wireless solutions in the literature address those challenges,
including our own approach toward a tight integration of control
and wireless communication. In addition to a theoretical analysis
of closed-loop stability, practical experiments on a cyber-physical
testbed demonstrate that our approach supports relevant smart
manufacturing scenarios. The article concludes with a discussion
of open challenges and future research directions.

MANUFACTURING and several other industrial sectors
are increasingly caught between a rapidly growing de-

mand for individualized, high-quality products, and the constant
pressure to maximize profit margins. To successfully handle
this balancing act, the manufacturing industry is in the early
phases of a revolution: Driven by advances in digitalization
and automation, smart manufacturing promises more flexible,
versatile, and scalable material flows and manufacturing
processes through plants that can be reconfigured based on the
individual product and overall process requirements [1]. These
plants will consist of physical systems (e.g., machines, storage
systems, supply-chain entities) with sensing, computation,
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communication, and actuation capabilities. Reconfigured and
automated through edge- or cloud-based services, the physical
systems will interact autonomously with one another and human
operators. Smart manufacturing will thus give rise to a new
bread of complex, large-scale cyber-physical systems (CPS)
that are safety-critical and rely on networked and distributed
control architectures.

Due to the complex interactions among the different enti-
ties, wired communication systems, such as fieldbusses and
Industrial Ethernet, will reach their limits. Instead, wireless
communication enables much higher flexibility, allowing for
on-demand plant reconfigurability while mitigating cable
breaks and faulty connections [2]. Wireless communication
is also more robust to certain external influences, including
heat, humidity, abrasive substances, and undamped vibrations.
Completely untethered, mobile physical systems are possible
through the use of batteries, which can be recharged using
energy harvesting or wireless power transfer techniques [3].
Furthermore, to reach into tiny spaces and to cover large
distances, physical systems built from embedded hardware and
capable of multi-hop communication will be crucial [4], [5].
Taken together, wireless communication offers unprecedented
flexibility, cost efficiency, and robustness and is, therefore, a
key enabler for smart manufacturing.

Despite many advantages, using wireless instead of wired
communication also poses significant challenges, for example,
in terms of reliability and security. Moreover, because the
manufacturing tasks are defined by algorithms, the software
and algorithmic components are closely linked to the physical
manufacturing processes. Hence, cyber and physical compo-
nents are in feedback with each other and cannot be designed in
isolation. Instead, joint designs are needed to leverage their full
potential. In particular, the physical process will dictate timing
and safety requirements, which pose challenges especially on
the wireless communication and embedded systems, which
drive the algorithms (e.g., control, learning, monitoring) that
control the overall manufacturing process. The situation is
exacerbated when many feedback loops are closed in a flexible
and ad-hoc manner across the same network and possibly over
large distances, while requiring fast and reliable updates, as is
the case in many envisioned smart manufacturing use cases.

Contributions and road map. This article provides a perspec-
tive on control and coordination over wireless networks as a
core technology for future smart manufacturing. Fig. 1 depicts
the structure of the article. To ground the subsequent discussion,
we start by presenting commonly discussed future use cases
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Figure 1. Structure of the article.

of smart manufacturing and derive a unified vision from these
(Sec. I). We then contrast this vision with concrete examples of
wireless technology in industrial practice today (Sec. II), and
analyze the gap between vision and practice. Based on the found
reality gap, we derive requirements and challenges of wireless
control for smart manufacturing (Sec. III), and review the state
of the art (Sec. IV). In particular, we discuss to what extent
existing approaches in the literature address core desiderata,
such as support for fast feedback, multi-hop communication,
stability guarantees, and resource efficiency. We then focus
on our own approach from recent work that jointly addresses
these aspects through a tight integration of control and wireless
communication, both at design time (i.e., prior to operation) [6],
[7] and at run time (i.e., during operation) [8]. Sec. V introduces
our co-design approach, followed by the presentation of the
basic architecture and unified system model (Sec. VI). Through
integration at design time (Sec. VII), we are able to achieve
fast feedback control (on the order of tens of milliseconds) over
multi-hop wireless networks with formal guarantees on closed-
loop stability. To further increase adaptability and resource
efficiency, we deepen the integration toward run time (Sec. VIII)
by having the control system inform the communication system
about its current needs for data transmission, and empowering
the communication systems to react accordingly. The developed
approaches are illustrated through several experiments on a
cyber-physical testbed consisting of ten inverted pendulum
systems as fast physical systems and 20 wireless embedded
nodes (Sec. IX and Sec. X). The article ends in Sec. XI with a

discussion of open challenges that are not yet addressed by the
state of the art in wireless control (including our own work), but
are vital for realizing the full vision of smart manufacturing and
thus provide ample opportunities for important future research.

Difference to prior publications. This article makes several
novel contributions compared with our prior work [6], [7], [8],
[9] by: (i) articulating a vision of smart manufacturing from the
perspective of wireless control and putting this vision in contrast
to the current reality in the manufacturing industry; (ii) working
out the main challenges for smart manufacturing in general and
wireless control in particular to close the gap between vision
and reality; (iii) providing a unified, tutorial-style description
of how our state-of-the-art approaches, which have appeared
in specialized venues and separate communities, are able to
address for the first time some of these challenges; (iv) reporting
on new experiments on an extended cyber-physical testbed
that demonstrate the capabilities of our approach; (v) and
highlighting the key research questions yet to be answered.

Relation to Industry 4.0. Enabling wireless control constitutes
one important building block toward realizing the vision of
smart manufacturing. This vision is often described in the
context of Industry 4.0 [10], [11], [12]. Relating the concepts
discussed herein with the reference architecture proposed
in [10], we aim at enabling wireless control and coordination
of entities within a smart factory. This can be further extended
by also establishing communication between different factories,
possibly worldwide, through the Internet of Things.

I. SMART MANUFACTURING: POTENTIAL USE CASES AND
VISION

To provide some context and concrete motivation for wireless
control in future manufacturing, this section outlines envisioned
use cases and the associated benefits (Sec. I-A to Sec. I-D).
Abstracting from these use cases, we derive in Sec. I-E the
main features and a unifying vision of smart manufacturing.

A. Reconfigurable Conveyor Belts

In traditional factories, conveyor belts have two ends: one
serves as an input, and the other one serves as an output. The
machines alongside a conveyor belt are arranged such that the
product can be manufactured in a step-by-step fashion. None
of the machines in the chain is redundant. The whole setup is
carefully designed in advance and follows the same procedure
for its entire lifespan to manufacture the ever same product.

By contrast, conveyor belts in smart factories are capable of
handling multiple types of products at once [13]. Each product
has a unique ID, and the conveyor belt is equipped with multiple
redundant machines. The process relies on machines taking
information communicated by the product (i.e., the unique ID),
extracting which processing steps are necessary, and distributing
the workload across the machines such that every product is
manufactured as fast as possible without sacrificing on product
quality. For this, conveyor belts can be “closed,” e.g., arranged
in a circular shape without input and output, enabling various
production routes. Coordination is required between product
and manufacturing machines as well as among the machines



distributed along the conveyor belt. While wired or mixed
wired/wireless communication solutions may be possible in
certain scenarios to realize this coordination, the use of wireless
networks arguably provides the highest flexibility.

B. Autonomous Drones
A predominant and widely-cited example of CPS in general

is autonomous drones. Due to their agility, flexibility, and capa-
bility to operate in three-dimensional space, drones are also of
interest for many use cases in future manufacturing [14]. Those
use cases include visual inspection and monitoring of factory
automation machinery, sensing tasks, transporting objects, or
delivering goods. In laboratory contexts and as demonstrations,
drones have also been used for cooperative manipulation and
transportation [15] and for construction tasks [16].

Taking the example of inspection, drones can act in different
ways. A drone can be fully autonomous, regularly monitoring
a production plant. Alternatively, a human operator can define
waypoints that a drone should follow while the drone transmits
image or video data for visual inspection. Next to different
levels of autonomy, drones also offer great flexibility as they can
switch between different tasks. For instance, a drone monitoring
a production plant can interrupt this task momentarily to carry
a spare part across the factory hall to a location where it is
urgently needed. While these application examples, performed
by a single drone, already constitute useful tasks that can
improve the efficiency and quality level of a smart factory, it is
swarms or fleets of multiple drones that can leverage the full
potential of autonomous flying vehicles. Fleets of drones can,
for example, carry parts or goods that are too heavy for a single
drone, jointly monitor larger plants, or directly participate in
the manufacturing process. In all cases, coordination among
drones is essential to ensure that they fulfill their tasks and
to prevent drones from crashing into each other. Typically,
each drone is equipped with an embedded microcontroller for
local control tasks (e.g., stabilizing the flight), while distributed
control tasks (e.g., coordinating the position of every drone in
a fleet) require wireless communication among the drones [17].

C. Remote Control of Mobile Robots
When multiple mobile robots act in the same workspace, be

it in the air or on the ground, planning and coordination among
them is often essential. In particular, when planning actions for
one robot it can be beneficial to take information from other
agents into account for improving safety, minimizing reaction
time, and optimizing resource usage. When decision making
happens locally on an agent, information from other agents must
be wirelessly communicated. Alternatively, in many scenarios
it is desirable to partly or entirely outsource the necessary
computations to edge devices or cloud services executing inside
large data centers [18], [19]. Outsourcing computations can
bring many benefits. Edge devices and in particular cloud
services offer more compute power, memory, and can exploit
additional data sources. This makes the application of more
sophisticated control and planning algorithms possible. Further,
stored data can be used to improve the algorithms’ decisions
over time, for example, via machine learning techniques. The
edge devices or cloud services then act as an “external brain.”

D. Mining Industry

While not belonging to smart manufacturing in a strict sense,
the mining industry shares many design considerations and has
an intrinsic need for autonomous and wireless technologies.
One reason for this is that mining environments are typically
extraordinarily hazardous and dangerous to humans; numerous
accidents have been reported over the last decade [20]. A first
step toward reducing the risks of human accidents in the mine
is the deployment of wireless sensor networks that localize the
workers in the mine [20] and monitor the environment [21].
This already comes with severe challenges because large spaces
have to be covered by the wireless sensor network. However,
it would be even more desirable to employ autonomous agents
or to control tasks in the mine remotely. On the one hand,
if autonomous or remotely controlled agents could fulfill all
tasks in the mine, this would entirely eliminate the risk of
human accidents in the mine. On the other hand, it would
also enable substantial savings and thus also be economically
viable, since pumping fresh air to the workers in the mine is
extremely costly. While companies are already moving into this
direction [22], the vision of fully autonomous agents working
independently in the mine has not been realized to date.

E. The Vision of Smart Manufacturing

Multiple heterogeneous sensing-computing-actuation units
are at the heart of the above-mentioned use cases. As shown in
Fig. 2, a unit may involve one main modality (e.g., sensing for a
stationary sensor in a mine or computing for an edge device) or
all modalities together (e.g., a drone that senses its environment,
locally computes a path, and actuates its motors to move along
that path). We refer to these sensing-computing-actuation units
as agents. The agents are generally coupled with the physical
world: sensors measure physical quantities and actuators act on
their environment. The connection of the two happens through
algorithms that execute on embedded computers. Using sensors
and actuators, software and processing are thus linked to the
physical world, which is the defining characteristic of CPS [23].
An integral aspect of future smart manufacturing systems are
multiple agents (or multiple CPS) that, each on an individual
level, connect the physical world and the cyber space, but are
at the same time also interconnected with each other to jointly
perform manufacturing tasks. At an abstract level, the overall
smart manufacturing system is therefore given by multiple
agents that interconnect in various ways, execute different
types of algorithms (control, optimization, learning, planning,
etc.), and can thus flexibly and jointly perform diverse tasks
that contribute to the overall manufacturing process.

Interconnections occur in various forms and on different hier-
archical levels. At the core of many smart manufacturing visions
are teams of mobile agents that interconnect with each other. In
all the above-mentioned use cases, inter-agent communication
is wireless (at least partially) to support the required flexibility,
mobility, ease of installation and maintenance, and so on.
Mobile agents may additionally connect with stationary agents
(e.g., fixed sensors), human operators, and the infrastructure
(e.g., edge devices), as illustrated in Fig. 2. Depending on
the use case, the multi-agent networks differ in the number of
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Figure 2. Abstract view of a future smart manufacturing system. Distributed agents are equipped with sensing (S), computing (C), and actuation (A) capabilities,
or a subset thereof. Depending on the manufacturing task at hand, which can change dynamically at run time, the agents interconnect wirelessly (green
dashed lines depict communication links) to form teams within an automation cell, among cells across the factory hall, and with global wired communication
infrastructure to access, for example, cloud services.

agents supported (e.g., two for remote control of a mobile robot,
or hundreds in the drone scenario) and the physical distance
covered (e.g., direct peer-to-peer links on the conveyor belt, and
long-distance multi-hop communication in the mining scenario).
Further, one may distinguish different levels of communication
(according to [24]), also indicated in Fig. 2: A local automation
cell comprises multiple interconnected agents, a factory hall
interconnects several cells, and factories interconnect through
the application layer communication to global networks, such
as the Internet or cloud services. The need for mobility typically
decreases with increasing communication level. While higher-
level communication between cells or with the cloud can
often resort to cabled routing-based networking solutions,
wireless communication is critical on the cell and factory
hall levels. Depending on the envisioned scenarios, wireless
communication may extend across several cells or the whole
factory hall (e.g., coordinated inspection with drones).

A key prerequisite for the envisioned flexibility in smart
manufacturing is the ability to perform various types of tasks
that are enabled and defined through algorithms and software.
For instance, the same drone may switch from an inspection
task to bringing an urgently needed tool to a worker from one
moment to the next, just by downloading a new algorithm from
the cloud in a split second. Algorithms in smart manufacturing

can either use only local information and resources available
to a single agent (localized) or use information and resources
from multiple agents (distributed), which is supported through
interconnections and the communication system.

Many different types of algorithms are relevant and jointly de-
fine the smart manufacturing process. Nevertheless, ultimately,
all algorithms operate on data from physical sensors or received
over the network, and decisions lead to actions in the physical
world (the manufacturing). Hence, control algorithms are an
essential component of any manufacturing system. Controllers
compute actuator commands based on sensor information to
achieve a desired control objective, including stability, precise
positioning, or robust performance in the face of uncertainty.

For the design of a control algorithm, the question of what
information is available as input is of key importance and leads
to different control architectures. In a centralized architecture,
the controller has global information; that is, it has access
to all relevant sensor readings based on which it computes
all actuator commands. In a decentralized architecture, the
control computation is distributed among multiple controllers,
each of which has access only to local sensors and computes
commands only for local actuators; in a purely decentralized
architecture, no information is shared between the controllers.
Finally, distributed control resides in between the two extremes:



control computations are distributed, but some information is
shared between the controllers. Typically, centralized control
yields the best performance as compared with decentralized
control [25] because it has maximal information available.

In smart manufacturing, the control architecture is not given
but can be influenced and adapted, in particular through the
communication system. For example, wireless links can be
established between otherwise decoupled controllers, at the
cost of using extra resources such as communication bandwidth
and energy. Thus, depending on the communication support,
control may be easier or harder, and the co-design of control
and communication in smart manufacturing gives significant
additional design freedom over traditional fixed, cable-based
architectures [26]. In general, the smart manufacturing system
comprises a multitude and various types of feedback loops and
control algorithms across different hierarchies. Besides control,
typical algorithmic components are optimization, planning, data
fusion, and machine learning. Here, architectural aspects play
a similar role as discussed for control [27], [28], [29].

A key characteristic of future smart manufacturing systems
is the demand for unprecedented flexibility and adaptability of
the overall system. This concerns both the interconnections and
the algorithms. Agents need to flexibly interconnect to form
heterogeneous teams that constitute an automation cell or may
even span across multiple cells. Similarly, algorithms have to
adapt to the task at hand. Adaptation may happen locally on a
computing unit, through the interaction of many agents, or by
downloading a new algorithm from the cloud, for example.

Fig. 2 abstracts envisioned smart manufacturing use cases
and illustrates key system characteristics. Before developing
requirements and challenges for realizing this vision, we discuss
in the next section how this vision relates to the current reality
in the manufacturing industry.

II. SMART MANUFACTURING: INDUSTRY EXAMPLES

We now present three example applications, where wireless
technology, as a key enabler for smart production, is actually
adopted by the manufacturing industry today. The discussion is
based on our experience at Fraunhofer IIS in troubleshooting
real-world industrial communication systems. Afterward, we
examine the gap between envisioned and existing use cases.

A. Automated Guided Vehicles

The automotive industry progressively uses automated guided
vehicles (AGVs) to drive car bodies to the respective assembly
station. In the considered example, 50 AGVs are commissioned
on the first factory floor and arrive at the assembly line on the
second floor by use of an elevator. All AGVs are wirelessly
connected to a central control system, which plans the routes
for each of them according to the car model, the model’s
individual configuration, and the utilization of the different
assembly stations. This way, the factory floor is used more
effectively without being tied to a specific vehicle model.

Communication between the control system and the AGVs is
based on IEEE 802.11 (i.e., Wi-Fi) in the unlicensed 2.4 GHz
frequency band. After more than a year of productive operation,
unpredictable communication faults occurred more and more

frequently, resulting in unplanned stops of the AGVs. This
was caused by an ever-increasing use of the 2.4 GHz frequency
band by additional Wi-Fi and Bluetooth-based applications,
which led to temporary coexistence problems. Such coexistence
problems are among the hardest to troubleshoot in real-world
wireless networks [30]. Unfortunately, moving to a licensed
frequency band (e.g., a 4G/LTE or 5G cellular network) is
not a viable option for many applications as running costs are
high; companies are unable to operate the network themselves,
leading to long service deployment times, demanding reliability,
latency, and real-time requirements cannot be met; and existing
security mechanisms do not offer sufficient protection for
sensitive data [31], [32]. So far, technological advances have
only been able to contain the coexistence problem, but not to
solve it. A co-design of control and communication is the most
promising approach to ensure the availability of the system.

B. Cordless Power Tools

In machine construction, cordless power tools are frequently
used to give workers maximum freedom of movement and to
access hard-to-reach places. To further improve the working
conditions and facilitate continuous quality assessment, these
tools can be connected to a central control system, which
sets the torque for each screw individually and logs the
measured values in a database. In the concrete use case, situated
in a motor assembly line at Mercedes-Benz Ludwigsfelde
GmbH in Germany (see Fig. 3), 18 cordless power tools are
connected to a central programmable logic controller (PLC)
via Bluetooth across a 100 m by 500 m factory floor. While this
wireless solution provided the desired freedom of movement,
the reliability was not satisfactory. Especially in hard-to-reach
places, the shadowing effect of both the workers and the
cordless power tools resulted in severe message loss. Such
message loss may be prevented by introducing redundancy in
the network, for example, by installing more nodes that form a
mesh topology and forward messages on behalf of other nodes
(i.e., multi-hop communication). The star topology of Bluetooth,
however, proved non-ideal for dealing with shadowing issues.

C. Parametrization of Automotive Electronics

The various electronic control units (ECUs) installed in a car
during production are initially not customized for the specific
vehicle model and equipment. A parametrization of the generic
software components running on the ECUs is carried out while
going through multiple test stations (e.g., chassis dynamometer,
advanced driver-assistance systems, sensor calibration, and the
like). During this calibration procedure, the worker needs to
set up the control system by connecting the test station to the
ECU through vehicle communication interfaces (VCIs). In the
considered use case, the VCIs are based on Wi-Fi operating
in the unlicensed 5 GHz frequency band. Up to 30 of these
free-moving wireless VCIs are used on a multi-level all-metal
factory floor of 100 m by 150 m. The coverage of this area is
provided by 15 Wi-Fi access points. Since the 5 GHz frequency
band is shared with weather radar stations, the access points
need to perform “in service monitoring” for the presence of
radar pulses. If radar pulses are detected, an access point must



(a) Factory floor. (b) Cordless power tool.

Figure 3. Motor assembly line at Mercedes-Benz Ludwigsfelde GmbH in Germany.

move to another channel within ten seconds of “channel move
time.” In the considered use case, unfounded detections of
radar pulses by the access points occurred. This led to sudden
channel changes and a reconnection of the VCIs, which caused
delays or even interruptions of the calibration procedure.

D. The Reality of Smart Manufacturing

These real-world application examples are in stark contrast
to the envisioned use cases of smart manufacturing presented in
Sec. I. Especially the use of wireless communication today is re-
stricted to applications that are neither time- nor safety-critical.
Closing sensing-computing-actuation loops continuously over
wireless communication networks, as put forward by the smart
manufacturing vision, is extremely far from what industry is
currently willing to take up, although the wish to wirelessly
interconnect robots, rotating parts, and AGVs in automated
high-rise warehouses is commonly expressed by many of our
industry partners. However, already in the comparably simple
real-world use cases discussed above, wireless communication
causes several issues. These issues are mainly related to the
reliability of wireless communication because, for example,
shadowing effects and coexistence problems can cause severe,
unpredictable message loss or complete disconnections. Thus,
the main reason for the reluctance of industry to adopt wireless
technology for more challenging and critical tasks appears to
be a lack of trust in the reliability of wireless solutions.

III. CHALLENGES FOR WIRELESS CONTROL IN SMART
MANUFACTURING

The comparison between vision and reality of smart man-
ufacturing revealed that there clearly exists a large gap. Our
analysis also identified three main challenges that need to be
solved to close this gap. We detail those challenges next.

A. Dependability

The real-world examples and envisioned use cases clearly
demonstrate that smart manufacturing systems are large-scale,
complex, and safety-critical CPS. For this reason, dependability

is of utmost importance, which entails that the systems must
be provably secure and function as intended under realistic
attacker and fault models. In addition to broken sensors, failing
devices, software bugs, side-channel attacks, and so on, these
models must account for message loss and disconnections
due to the notorious unreliability of wireless communication.
Based on these attacker and fault models, rigorous proofs of
dependability properties along with an end-to-end validation of
the systems on real-world smart manufacturing demonstrators
are needed to promote industrial and societal acceptance of
wireless technology in safety-critical applications—there seems
no alternative path to realizing the smart manufacturing vision.

Concerning wireless control, the stability of the feedback
loops in a smart manufacturing system is arguably the most
basic dependability property that has to be provably satisfied. To
guarantee closed-loop stability and also achieve the application-
specific control performance, the ability to provide fast feedback
over a wireless communication network is essential to keep up
with the dynamics of the physical (often mechanical) systems
in smart manufacturing. For example, controlling the motion of
a remote robot and coordinating a fleet of drones, as mentioned
in the envisioned use cases from Sec. I, require update intervals
of tens of milliseconds [19], [33]. Such real-time requirements
must also be met when wireless communication occurs over
multiple hops, which is key, for example, when large distances
in mining or across a whole factory floor are to be covered.

B. Adaptability
Smart manufacturing systems also have to be highly adaptive

to support on-demand reconfigurability of conveyor belts,
dynamic assignment of new tasks to individual drones, or
the reformation of entire fleets of AGVs. This means in
particular that the systems must adapt at run time to changes in
application requirements, hardware and software components,
and dynamics of the environment in which they operate. As a
result of such adaptability, the number, types, and capabilities
of agents, the algorithms they execute, and how they are
interconnected can change in unforeseen and complex ways
throughout the lifespan of a smart manufacturing system.
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With regard to wireless control, a first step toward adaptabil-
ity is to enable the system to switch at run time between a fixed
set of operating modes, while ensuring closed-loop stability
and control performance. A mode may correspond to a distinct
manufacturing task or conveyor belt configuration, and mode
changes may be triggered by the cloud-based automation logic
or the arrival of a product at a conveyor belt. For an effective
collaboration of multiple agents, a distributed implementation,
where every agent locally uses information received over the
network to solve a common control task, is highly beneficial.
Multi-hop communication supports unforeseen interconnections;
for example, no additional access points must be installed if
suddenly the need for a larger wireless coverage arises.

C. Efficiency

The algorithms (control, optimization, learning, etc.), com-
munication protocols, and other software components need to
operate efficiently because of limited compute power, memory
capacity, and wireless bandwidth. This is particularly relevant
on the agent level, where embedded hardware such as low-cost
microcontrollers and wireless radios are desirable for economic,
size, or weight considerations. Energy efficiency is not only a
concern for battery-powered drones, remote energy-harvesting
sensors, and the like, but also for cloud-based services [34].

With regard to wireless control, models and methods are
needed that increase control performance (which may translate
into shorter manufacturing cycles and higher product quality)
with the least resources. To achieve this goal, controllers should,
for example, save resources whenever possible and reallocate
otherwise unused resources to avoid wasting them.

IV. STATE OF THE ART IN CONTROL OVER WIRELESS

This section reviews efforts reported in the literature to solve
the wireless control challenges outlined in the previous section.

Such efforts are required as closing feedback loops over a
wireless network can make the control design significantly more
difficult compared to traditional control architectures [48], [49],
[50], [51]. Traditionally, sensors and actuators are connected
to a centralized controller through point-to-point wires (Fig. 4,
left) [51]. Although centralized control is beneficial because
the controller has global information, it is often impractical
for large-scale systems. An alternative is decentralized control,

where the system is split into a number of subsystems, each
connected to a local controller, but without signal transfer
between them [48], [49]. However, decentralized control can
exhibit poor performance, and it may not even be possible
to achieve closed-loop stability [48]. Hence, communication
networks in the form of wired busses were introduced [51]
(Fig. 4, center), which are still widely used in automation and
control today [52], [53]. Replacing a wired bus with a wireless
network (Fig. 4, right), as required for smart manufacturing to
close the sensing-computing-actuation loops shown in Fig. 2,
leads to communication imperfections including longer trans-
mission delays, larger jitter, as well as higher and correlated
message loss (see Sec. V for a detailed discussion).

Over the past two decades, a lot of research in the control
community has considered these communication imperfections
in the form of theoretical stability analyses for different control
architectures, transmission delay distributions, message loss
models, etc. Numerous simulation case studies have also been
carried out, for instance, based on the WirelessHART industrial
standard [54], [55]. This line of research has led to a principled
understanding of the wireless control problem, and excellent
surveys [56], [57] review the developed approaches and results.

However, as discussed in Sec. II, one of the primary concerns
in industry today is a lack of trust in the reliability of wireless
solutions. This trust can only be established by complementing
rigorous theoretical analyses with real experiments on realistic
cyber-physical testbeds [58]. Therefore, we focus our discussion
in the following on control-over-wireless approaches that have
been validated on physical platforms and real wireless networks.

Table I qualitatively compares such approaches currently
found in the literature by assessing whether the wireless control
challenges outlined in Sec. III have been addressed. Although
these constitute basic challenges toward realizing the smart
manufacturing vision and many challenges are yet to be solved,
as discussed in Sec. XI, we can see that none of the existing
approaches is capable of addressing all basic challenges.

Having a closer look at Table I, we observe that only [7],
[8] support a distributed implementation1. Distributed imple-
mentation is understood in the sense that agents are equipped
with local computing units and use their own sensor readings
and information received over the communication network to
locally compute new actuation commands. All other approaches
support only a central computing unit that computes the new
actuation commands for all agents. However, support for both
architectures is needed to enable the use cases from Sec. I.

Further, motion control for mobile robots, for example, needs
to happen at fast update intervals (i.e., tens of milliseconds) to
keep up with the physical dynamics of the agents. At the same
time, in large factories or for remote control in mines, large
distances are to be covered, requiring multi-hop communication.
We see that apart from [7], [8] no solution can cater for this
crucial requirement. References [35], [36] control a double-tank
system, where update intervals of around 1 s are sufficient, over
a single-hop network. Several works consider different variants
of inverted pendulum systems [37], [38], [39], [43], [44] or

1Another work that demonstrated distributed control over wireless is [6], a
prior conference version of [7]. In general, [6] provides the same properties
as [7], the main difference being that [6] does not support mode changes.



Table I
DESIGN SPACE OF WIRELESS CPS THAT HAVE BEEN EVALUATED ON PHYSICAL PLATFORMS AND REAL WIRELESS NETWORKS.

Dependability Adaptability Efficiency

Work Stability Fast update Multi- Mode Distributed Reallo- Resource
analysis intervals hop changes implementation cation savings

[35], [36] 3 7 7 7 7 3 3
[37] 3 3 7 7 7 7 7
[38] 3 3 7 7 7 7 7
[39] 3 3 7 7 7 7 7
[40] 3 3 7 7 7 7 3

[41], [42] 3 3 7 7 7 7 7
[43] 7 3 7 7 7 7 7
[44] 7 3 7 7 7 7 7
[45] 7 7 3 7 7 7 7
[46] 7 7 3 7 7 3 3
[47] 7 7 3 7 7 7 3
[7] 3 3 3 3 3 7 7
[8] 7 3 3 7 3 3 3

mobile robots [40], [41], [42], demanding update intervals
of at most tens of milliseconds. These approaches are all
restricted to single-hop networks. Wireless control over multi-
hop networks is demonstrated in [45], where the lightning in an
operational road tunnel is controlled, in [46] which considers
power capping management in a data center, and in [47] where
Matlab simulations of physical plants are controlled. The update
intervals in those setups are on the order of several seconds.
While the majority of the works that consider control over
single-hop networks provide some kind of stability analysis,
only [6], [7] can do this for multi-hop networks. However,
since a practical demonstration can never cover all potential
situations that may be encountered during a real execution in a
smart factory, a theoretical analysis is absolutely indispensable.
Naturally, this becomes more challenging under multi-hop
communication. Also, the demand for (basic) adaptation at run
time through mode changes (e.g., changes between a fixed set
of application tasks) are exclusively demonstrated in [7].

Another key characteristic of smart factories is that many
agents need to transmit information over the wireless channel,
such as their current positions, latest sensor values, or actuation
commands. Moreover, at least some of the agents and infras-
tructure sensors attached to walls or moving equipment in a
smart factory may be powered by batteries. As the bandwidth
of a wireless channel is limited, and wireless radios draw
considerable power, messages should only be sent if necessary.

Motivated by this, the control community has developed
a variety of event-triggered and self-triggered methods [59],
[60]. Both methods send information only upon the occurrence
of certain events, such as an error growing too large. Event-
triggered control algorithms take this decision instantaneously.
Thus, the communication system cannot reallocate resources
that are not needed by the control system. To enable this, the
control system needs to inform the communication system in
advance about its communication demands. This can be realized
through self-triggered control, where at each communication
instant the control system already decides when it needs to
transmit information the next time. Table I therefore also lists
integrations of self-triggered control with communication sys-
tems to enable resource savings and reallocation. Next to self-

triggered approaches, [46] considers a network manager which
checks the communication demands of all agents and assigns
slots accordingly. However, as the update intervals considered
in [46] are 20 s or longer, this solution is not applicable to
the fast feedback loops in future smart manufacturing systems.
In summary, [8] is the only work that can combine resource
reallocation and resource savings with fast update intervals,
multi-hop communication, and a distributed implementation.

Our analysis of the state of the art shows that [7], [8] are
superior to other prior work. Thus, in the following sections,
we illustrate the approach presented in [7], [8] in more detail.

V. HOLISTIC APPROACH: OVERVIEW

In Sec. III, we identified three main challenges that need to
be addressed to close the gap between vision and reality of
smart manufacturing, while in Sec. IV we discussed to which
extent those challenges are addressed by the current state of the
art in research. From this discussion, the approaches proposed
in recent works [7], [8] resulted to be the only approaches that
successfully address these challenges. Those works propose a
holistic approach that tightly integrates the control and wireless
communication systems with all their hardware and software
components, both at design and at run time.

The reasons why prior solutions fail to address the above-
mentioned challenges lie in the imperfections of the wireless
communication medium as compared to cable-based solutions:
C1 Limited throughput. Depending on the wireless technology

used, the number of messages carrying sensor readings and
control signals that can be exchanged among distributed
agents per unit of time can be significantly lower compared
with a wired communication system. Also, the throughput
in a multi-hop network is generally lower than in a single-
hop network where all agents can directly communicate
with one another. Fundamental trade-offs between achiev-
able throughput, communication range, and energy cost
require non-trivial system design decisions to be able to
meet the dependability and efficiency requirements.

C2 Unpredictable delays. Communication delays hinder the
system-wide coordination of distributed entities, can im-
pair control performance, and can even make it impossible



Control System

Basic System Architecture (Section VI)

Constant Update Interval
(Negligible Jitter)

Independent and Identically
Distributed Packet Loss

All Agents can Receive
All Transmitted Messages

No Duplicated and
Out-of-order Messages

Synchronization

Messages

Application Processor

CPS
Application

Tasks

ActuationSensing

Control

Communication Processor

Low-power Wireless
Multi-hop Communication
+ Time Synchronization

Global Scheduling

Wireless Embedded System

System Model

Packet Loss
Model

Discrete-time
Process Model

Arbitrary Traffic
Patterns

Integration at Run Time (Section VIII)

Resource Savings & Reallocation

Timing
Requirements

Communication
Requirements

Self-triggered

Centralized Design
Distributed Impl.

Schedule
Dissemination

Online Scheduler

Integration at Design Time (Section VII)

Stability Guarantees

Mode Change
Characteristics

Requirements

Centralized Design
Distributed Impl.

Switched System
Compensate Msg
Loss and Delay

Periodic

Mode Change
Protocol

TTW Scheduler

Figure 5. Overview of system architecture with co-design and integration approaches.

to stabilize a feedback system, especially when the delays
vary unpredictably fashion (i.e., distribution of the delays
is unknown). Such unpredictable, time-varying delays are
the norm rather than an exception in wireless networks,
caused by, for example, retransmissions of lost messages,
varying dwell times in message queues, and dynamic
changes in the routing paths or communication schedules.

C3 Constrained communication patterns. Although wireless
communication is broadcast in nature, allowing all devices
in communication range of a sender to receive a message
if they have their radio turned on, the need for reliable and
efficient communication has led to many protocols that
support only specific communication patterns. For instance,
in WirelessHART, all messages need to pass through the
central gateway, which makes an effective coordination of
all agents in a cell highly inefficient. Moreover, constrained
communication patterns make it more challenging to
provide certain dependability properties: Well-known fault-
tolerance mechanisms [61] rely on the ability to share
information among a set of agents (e.g., three agents,
where one acts as the primary controller and the other
two act as back-up controllers that seamlessly take over

when the primary controller fails) and closed-loop control
without visibility into the global system state can lead to
poor performance and render stability infeasible [62].

C4 Correlated message loss. It has been shown that commu-
nication in both wireless [63] and wired [64] networks is
often subject to correlated message loss, that is, multiple
consecutive messages can be lost in a “burst” and the
maximum length of these bursts is extremely difficult to
predict. As correlated message loss interrupts a feedback
loop in an unpredictable way, it can be very hard if not
intractable to perform a valid closed-loop stability analysis.

As indicated in Fig. 5, our holistic approach starts by taming
those imperfections to the extent possible on the wireless
embedded system side. The resulting key characteristics are
then embedded into a common system model that also captures
the dynamics of the physical systems to be controlled. Such
a unified underlying model allows for the co-design of the
control and communication systems based on relevant mutual
properties. For instance, the control system needs to countervail
inherent imperfections of wireless communication, such as
message loss and delays, while the communication system
needs to account for the traffic demands of the control system.



Since all of this can be done prior to execution, we call this
integration at design time. Nevertheless, at run time, the control
and communication systems must adapt their functioning in
a timely and safe manner to changes in the mutual properties
to keep satisfying the requirements. Such changes can be due
to varying application tasks, hardware or software updates, or
environment dynamics, including benign and malicious ones.
For example, often interference-free operation of a wireless
CPS cannot be guaranteed. To keep the smart manufacturing
system in a safe state, the control system needs to adapt and put
more focus on robustness to reduce communication demands,
while possibly sacrificing control performance. In this way,
dependability can be ensured without sacrificing adaptability
and efficiency, yet it requires a tight integration of control and
communication both at design time and at run time.

Over the past three years, we have made significant progress
toward such a holistic approach. Fig. 5 illustrates the overall
architecture of the wireless CPS along with our co-design and
run time integration approaches. The basic system architecture,
described in Sec. VI, embodies the fundamental idea underlying
our approach: Address challenges C1–C4 to the extent possible
in the design of the wireless embedded system such that the
system model can account for them in an accurate and tractable
way. The integration of the control and wireless embedded
systems at design time and run time can then be achieved using
straightforward methods, as detailed in Secs. VII and VIII.

As a result, we were able to demonstrate for the first time
reliable and efficient control and coordination of multiple
physical systems over low-power wireless multi-hop networks
at update intervals of 20-50 ms [6]. Specifically, through
integration at design time, we obtained formal closed-loop
stability guarantees even while the wireless CPS adapts at run
time to varying application needs and network dynamics [7].
Through integration at run time, we have shown significant
bandwidth and energy savings as well as the dynamic real-
location of otherwise unused resources [8]. With this, our
holistic approach demonstrated the capability to meet certain
dependability, adaptability, and efficiency requirements of
future smart manufacturing that were impossible before.
Road map. The following three sections describe our holistic
approach in more detail. Afterward, Sec. IX describes a full-
fledged cyber-physical testbed we designed to systematically
evaluate our approach on physical platforms and real wireless
networks. Sec. X presents experimental results that illustrate
the capabilities of our approach in a range of scenarios that are
representative of future smart manufacturing systems. While
we believe that our work represents an important step toward
realizing the smart manufacturing vision, several important
challenges still remain to be solved. Sec. XI discusses some of
these challenges and opportunities for future research. Essential
parts of our work are available as open source (see Table II).

VI. BASIC ARCHITECTURE AND SYSTEM MODEL

The foundation of our approach toward building a depend-
able, adaptive, and efficient wireless control system is a wireless
embedded system architecture that facilitates the co-design of
communication and control at design time and at run time. To
realize this co-design, we proceeded in two steps:

Table II
AVAILABILITY OF THE DIFFERENT COMPONENTS OF THE PRESENTED

APPROACH AND CYBER-PHYSICAL TESTBED

Component Available

Dual processor platform https://gitlab.ethz.ch/tec/public/dpp/-/wikis/
home

Inverted pendulum systems Quanser systems (proprietary):
https://www.quanser.com/products/
linear-servo-base-unit-inverted-pendulum/,
Hardware details for the self-built pendulum
systems and the interface between pendu-
lums and the DPP are available on request.

Communication code The communication code is based on Glossy,
see https://github.com/ETHZ-TEC/LWB.

TTW scheduling framework https://github.com/romain-jacob/
TTW-Artifacts

Control code The details of the control algorithms can
be found in [6], [7], [8]. Their implementa-
tion is highly specific to our hardware and
physical systems and available on request.

1) mitigate imperfections (i.e., delay, jitter, packet loss) on
the wireless embedded system side to the extent possible;

2) transfer the resulting properties of the wireless system
into a system model that is used for the control design.

To this end, we designed a wireless embedded system
consisting of a hardware platform, a wireless communication
protocol, and a global scheduling policy at its heart. We provide
a brief overview of these components in the following; more
detailed descriptions can be found in [6], [7].

A. Wireless Embedded System

Hardware platform. One of the key building blocks of
our wireless embedded system is the hardware platform.
It combines all necessary components while providing the
mechanisms needed to achieve the goals of dependability,
efficiency as well as predictability (see challenge C2). From a
hardware perspective, we argue for low-power and low-cost
commodity hardware as it can be deployed numerous and
almost everywhere due to its small form factor. As discussed
in Sec. I-E, we find multiple interconnected sensing-computing-
actuation units in typical CPS applications. Thus, we have two
kinds of tasks: the application task, which consists of sensing,
computing, and/or actuation, and the communication task. Both
tasks are essentially independent of each other, except that the
application generates the data to be communicated, and may
execute concurrently with vastly different workloads.

We thus leverage a custom-built heterogeneous dual pro-
cessor platform (DPP). This DPP features a communication
processor (CP) and a more powerful application processor (AP).
Because application and communication tasks execute on dif-
ferent processors, we avoid any resource interference between
them, which could otherwise lead to unpredictable execution
delays. Furthermore, the data exchange between AP and CP is
handled by Bolt [65], a processor interconnect with formally
verified worst-case execution times, a critical property to enable
real-time operation and to mitigate challenge C2.

Wireless communication protocol. In general, communication
must bereliable enough to guarantee a safe execution of CPS,

https://gitlab.ethz.ch/tec/public/dpp/-/wikis/home
https://gitlab.ethz.ch/tec/public/dpp/-/wikis/home
https://www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/
https://www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/
https://github.com/ETHZ-TEC/LWB
https://github.com/romain-jacob/TTW-Artifacts
https://github.com/romain-jacob/TTW-Artifacts
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Figure 6. Time-triggered operation of the low-power wireless protocol.
Communication occurs in rounds that are scheduled with a given round
period T . In the time interval between rounds, there is no communication
between nodes, i.e., communication sleeps for energy efficiency. Every beacon
(b) and data slot corresponds to an one-to-all Glossy flood [69].

as captured by challenges C2 (unpredictable delays) and C4
(correlated message loss). The available bandwidth should be
sufficiently large in order to keep up with the dynamics of
the physical processes to be controlled (see challenge C1).
Those requirements also need to be met when large distances
are covered, that is, when messages must travel multiple hops.
Finally, the protocol needs to ensure consistent functioning also
when agents are moving in the network, under changes in the
environment, or under dynamically changing communication
patterns (see challenge C3). In such cases, we are facing a
dynamic network where the quality of communication links
continuously changes, and links appear and disappear.

The research community and industry have developed numer-
ous low-power wireless communication protocols over the past
few years. Comparing them is non-trivial as they were evaluated
in different environments, on different hardware platforms, and
using different experimental use cases. Efforts have recently
been made to benchmark some of these protocols [66]. In
particular, the results of the annual EWSN Dependability
Competition [67] clearly show that, under various considered
benchmark scenarios, stateless flooding-based solutions have
achieved the best performance in terms of latency, reliability,
and energy efficiency, outperforming protocols based on stateful
routing [68]. All top-three solutions in the competitions have
in common that they are based on a variant of Glossy [69].

Glossy is a multi-hop communication primitive based on
synchronous transmissions [70]. It inherently supports dynamic
networks as it operates topology-agnostic, i.e., independent of
the underlying network state. In a Glossy flood, one message is
disseminated from one node to all other nodes in a (multi-hop)
network with a reliability that has been found to be above
99.9 % on various real testbeds with more than 200 nodes [71].
The time required for this is close to the theoretical minimum
for half-duplex radios. In the rare event of message loss, it has
been shown that these losses can be safely approximated by an
i.i.d. Bernoulli process [72], [73], which is an essential property
for the control design. Glossy can also time-synchronize all
nodes in the network with an accuracy of a few microseconds.

Our wireless protocol is also based on Glossy. As illustrated
in Fig. 6, nodes communicate in periodic rounds with period T
and sleep in between to save energy. This is possible because
of Glossy’s time synchronization, which is used to schedule the
start of the communication rounds at every node. Each round
consists of a series of slots. In each slot, data are sent by a single

node using a Glossy flood. The beacon slot is always initiated
by a dedicated node, called host, serving as synchronization
point for all other nodes. All other communication slots after
the beacon are data slots, which contain the actual application
messages, one slot for each message. As a result, one round
realizes the data exchange required for one control cycle within
a few tens of milliseconds, which makes our protocol applicable
for many control applications and especially for fast feedback
control. Moreover, since every message can be received by all
nodes, any communication pattern is inherently supported (see
challenge C2). This significantly simplifies the control design as
it enables individual nodes to work based on global knowledge.
Although this kind of broadcast-only communication may seem
wasteful, many solutions based on synchronous transmissions
that have been developed over the past few years demonstrate
that this approach can outperform traditional routing-based
approaches by a significant margin in terms of efficiency and
reliability across a wide range of real-world scenarios [70].

Global scheduling. In order to provide end-to-end guarantees
for the overall CPS, a global scheduling of the different tasks
executing on the two processors of the DPP platform and a
time-predictable wireless data exchange is needed to cope with
delays and jitter (see challenge C2). The time needed from
sensing the state of the system until applying the corresponding
control command is the end-to-end delay TD. Intervals between
consecutive sensing and actuation tasks define the update
interval TU . An appropriate task scheduling achieves two goals:

1) the most recent data is available for communication;
2) variations of TU and TD are minimized to the extent that

both can be bounded by a small jitter, which considerably
simplifies the control design and the further analysis of
the overall CPS (e.g., in terms of closed-loop stability).

The basis of our scheduling is an accurate global time reference
provided by the communication protocol, at every node. An
exemplary schedule and further details are explained in [6].

Essential properties. With the presented wireless embedded
system, the control design can build on the following properties:
P1 The theoretical worst-case jitter on TU and TD is bounded

by ±50 µs for update intervals of up to 100 ms [6].
P2 Message losses across the wireless network can be safely

approximated by an i.i.d. Bernoulli process [72], [73].
P3 The application or control logic can make use of arbitrary

communication patterns over a multi-hop network.
P4 Message duplicates and out-of-order message deliveries

are impossible by design.

B. Control System

In this section, we present a mathematical model of the
overall CPS capturing the key properties that result from the
wireless embedded system design. We consider two settings,
depicted in Fig. 7: remote control and distributed control. We
first discuss the common underlying system model and then
comment on differences between both settings.

The mathematical model shall describe the physical system
and the key properties of the wireless embedded system. As
stated in property P1, the jitter is orders of magnitude lower
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Figure 7. Block diagram of the overall control system. We consider two
scenarios, namely remote control (Fig. 7a) and distributed control (Fig. 7b).

than the update intervals of tens of milliseconds we target with
mechanical systems. Thus, the jitter can be safely neglected for
control design [74, p. 48]. This allows us to model the system
in discrete time, where one discrete time step corresponds to
one communication round. For each controlled physical system
i, we assume linear and time-invariant (LTI) dynamics,

xi(k + 1) = Aixi(k) +Biui(k) + vi(k), (1a)

with xi(k) ∈ Rn the state of the system, ui(k) ∈ Rm the
control input, vi(k) ∈ Rn a normally distributed random
variable (capturing, for instance, model uncertainty), k ∈ N
the discrete time index, and Ai and Bi matrices of appropriate
dimensions. Further, we assume that we can measure the full
state, but measurements are corrupted by noise,

yi(k) = xi(k) + wi(k), (1b)

where wi(k) is again a normally distributed random variable.
Message loss is modeled through variables θ(k) and φ(k)

(cf. Fig. 7), which are two independent Bernoulli random
variables indicating successfully received (θ(k) = 1, φ(k) = 1)
respectively lost (θ(k) = 0, φ(k) = 0) messages. While the
Bernoulli assumption is oftentimes not satisfied for traditional
wireless systems based on routing [72], it is indeed valid for
our wireless embedded system design as per property P2. To
ease the presentation and since both θ and φ are i.i.d., we omit
the time dependence of the variables in the following.

For remote control (see Fig. 7a), we consider a remote
computing unit, the controller, connected to the physical system
over a wireless network. In this case, sensor measurements and
control commands need to be sent over the wireless network.
In this scenario, all computations are executed at a remote
location, and no computational power is required directly at
the physical system. Thus, in case a data packet containing
the next control input is lost, we perform a zero-order hold
(ZOH), i.e., we keep applying the previous control input:

u(k) = φû(k) + (1− φ)u(k − 1). (2)

Here, û(k) denotes the control input computed by the controller,
to be made precise in the following section. We present the
control strategy and analysis for remote control for the single-
loop case, i.e., with only one system. Therefore, we drop the
index i whenever discussing the remote control scenario.

In the distributed control scenario (see Fig. 7b), we assume
systems to be collocated with a local controller. Communication
over the wireless multi-hop network is then needed to solve
the distributed control task. Fig. 7b illustrates a scenario
where agents communicate their sensor measurements over
the network. However, the general methodology developed in
the next sections extends straightforwardly to other scenarios,
and we will also discuss such examples throughout the text.

VII. INTEGRATION AT DESIGN TIME

Building on the basic architecture from the previous section,
we now present an integration of the wireless embedded system
and the control system at design time. Prior to execution, we
derive a global schedule that serves the requirements of the
control system (see Fig. 5). On the control side, we take the key
properties of the wireless embedded system design, come up
with a suitable control strategy, and formally prove closed-loop
stability of the overall CPS. As will become apparent in the
remainder of this section, the nature of the wireless embedded
system allows us to use fairly straightforward methods from
control theory to design a suitable control strategy and
prove stability. The stability proof yields a condition that is
computationally cheap to evaluate and can be used to check
stability for any LTI system using our wireless embedded
system design and control strategy. Moreover, we show in two
examples how the support for arbitrary communication patterns
greatly simplifies solving distributed control tasks.

To additionally be able to influence the behavior during
execution, we further extend the basic architecture and enable
the CPS to change between a well-defined set of modes. A
mode describes the operation of the overall CPS, including
the scheduling of tasks, the control objectives, and the content
and period of communication rounds. Since we calculate the
modes a priori, we can verify closed-loop stability for each
mode and also for switches between any pair of modes.

A. Wireless Embedded System

We extend the basic wireless embedded system with an
offline and an online component. We leverage Time-Triggered
Wireless (TTW) [75] to compute different operating modes
prior to execution (offline), which includes the order and time
offsets of application and communication tasks. To switch
between modes and thus adapt to changing application demands
during execution (online), we design a mode change protocol.

Time-Triggered Wireless. With an increasing number of nodes
and possibly multiple control loops being closed over the same
wireless network, the scheduling problem, as described in
Sec. VI-A, quickly gets more complex, which calls for an
automated solution. To this end, we use TTW, a framework
tailored to solve this type of scheduling problem [75]. TTW co-
schedules task executions and message transmissions together
with the communication rounds. It statically synthesizes the
schedule of all tasks, messages, and rounds offline by formu-
lating the corresponding mixed-integer linear program. This
way, the application’s real-time constraints can be guaranteed
while minimizing the computational demand at runtime.



Mode change protocol. The computed modes are distributed
to all nodes prior to execution. This allows us to realize a mode
change at runtime by exchanging unique mode identifiers rather
than all information that is relevant for a mode. As a result, the
communication bandwidth required to realize a mode change
becomes extremely small, which reduces end-to-end latencies
and energy costs on the communication side.

Our mode change protocol ensures a timely and safe transi-
tion from one mode to another. The beacon slot (see Fig. 6),
originally only used to signal the start of a communication
round, is extended with information about the current mode
ID, the next mode ID, and a counter that describes the number
of rounds until the mode change becomes active. Nodes in the
network can learn about the mode change until the counter
reaches 0. In the unlikely event that a node misses all beacons
during this time, it enters a resynchronization state where it
does not participate in any communication until it receives
again a beacon with the new mode ID. This prevents nodes
from executing the wrong mode and disturbing the network,
which ensures a safe operation. See [7] for more details.

B. Control System

Next, we outline the control strategy for both remote control
and distributed control tasks, which builds on the essential
properties of the preceding wireless embedded system design.
Control design. We first discuss the remote control scenario
illustrated in Fig. 7a. The controller aims to achieve desired
(e.g., stable) closed-loop behavior of the physical system by
sending appropriate input signals. To this end, we start by
designing a controller for the nominal system, that is, without
delays and message loss. This can be done using well-known
techniques from control theory, such as the linear quadratic
regulator (LQR) [76]. We then enhance the control design to
cope with constant delays and rare i.i.d. message loss.

We know that messages that are sent over the wireless
channel arrive with a delay of one time step (see Fig. 7a).
Further, we know when a data packet should be sent in each
communication round, and thus we also know when a packet
has been lost. The controller can now compensate for the delay
and message loss by performing state predictions based on a
mathematical model of the physical system,

x̂(k) = θAy(k − 1) + (1−θ)Ax̂(k − 1) +Bû(k − 1)

= θAx(k − 1) + (1− θ)Ax̂(k − 1) +Bû(k − 1)

+ θAw(k − 1).

(3)

Here, x̂(k) denotes the predicted state and û(k) the control
input computed by the controller.

With x̂(k), the controller has an estimate of the current
state of the system. However, the control input that is sent
over the network will be delayed by another time step. The
controller anticipates this delay by making a further prediction
and computing the next control input based on this,

û(k + 1) = F (Ax̂(k) +Bû(k)), (4)

where F has been designed to render the nominal system stable
(e.g., an LQR design). The input û(k + 1) is then sent over
the wireless network.

Stability analysis. The nature of the wireless embedded system
and the control design presented above allow for providing
theoretical stability guarantees. In the following, we will give
an intuition of how these stability results can be obtained and
refer to [6], [7] for detailed descriptions and the full proofs.

Two main ingredients for the stability analysis are properties
P1 and P2 of the wireless embedded system. Since jitter
is negligible, we can accurately describe the dynamics with
the discrete-time model developed so far, assuming a fixed
sampling interval. The i.i.d. property of message loss further
makes it possible to apply well-known tools from the theory
of linear matrix inequalities (LMIs) [77, Ch. 9]. In essence,
the system is stable as long as the message loss probability is
“low enough” and the update interval is “short enough.” For a
certain message loss probability and update interval, stability
of the overall CPS can be assessed by evaluating a single LMI.
The concrete LMI and stability test are given in [7, Thm. 1].

This analysis is valid as long as we stay in a given mode. In
the face of mode changes, the analysis needs to be enhanced.
A mode change might, for instance, indicate a change of the
length of a discrete time step and, thus, different A and B
matrices. In control theory, this is referred to as a switched
system. It is well known that a switched system can become
unstable even if all subsystems are stable [78]. However, if
we ensure that the system, on average, stays in each mode
for a sufficient amount of time, called the average dwell time,
the stability of the subsystems is still sufficient. Thus, as long
as the mode changes respect the average dwell time, we can
guarantee stability of the overall system. In [7], we discuss
how to calculate the dwell times and show in examples that
respecting those on average is not overly restrictive.

Distributed control. We now turn our attention to distributed
control, as depicted in Fig. 7b. We reintroduce agent index i as
we are dealing with multiple systems. While we here assume a
local controller to be collocated with each system, information
of other systems is needed to fulfill the distributed task. That is,
the control input ui(k) of each system now not only depends
on its local state, but it also needs to take the states of other
systems into account. Considering again static linear feedback,
the control law can be written as

ui(k) = Fiixi(k) +
∑
j∈Ωi

Fij x̂j(k − 1), (5)

where Ωi denotes the set of all agents whose state is relevant
for agent i. In general, if we want to find the optimal solution
for the distributed control problem, Ωi may comprise all other
agents. Per property P3 the wireless embedded systems supports
arbitrary communication patterns, and thus we can also cater
for the most extreme case where every agent needs information
from all other agents (i.e., all-to-all communication).

Similar to the remote control case, the state x̂j(k− 1) in (5)
denotes the current estimate that agent i has of agent j’s state.
As can be seen from (5), the delay is already incorporated
since at time k the value x̂j(k−1) is used. In case of message
loss, we use ZOH, i.e., for agent 2 from Fig. 7b we have

x̂2(k − 1) = θy2(k − 1) + (1− θ)x̂2(k − 2). (6)



In the following, we give two concrete examples of dis-
tributed control tasks. In both cases, we present the two-agent
setting for illustration as per Fig. 7b. The general framework
straightforwardly extends to a larger number of agents, as we
demonstrate through testbed experiments in Sec. X.

Example 1 (Consensus). We consider a variant of the well-
known average consensus problem [79]. Therein, the agents
aim to reach the desired state xdes = 1

N

∑
i xi, which is the

average of the individual states xi of N agents. Here, we divide
the problem into two parts. First, the agents should agree on
a common xdes via average consensus. Then, this state should
be tracked. Thus, communication between agents is needed
only in the first part.

A straightforward way to achieve average consensus is to
initialize the local xi,des(0) of each agent with its current
state. Then, in each round, all agents receive the xj,des(k− 1)
from the agents they can communicate with and update their
xi,des(k) following a standard consensus update law [79]

xi,des(k) = piixi,des(k − 1) +
∑
j∈Ωj

i

pij x̂j,des(k − 1), (7)

where Ωj
i denotes the set of all agents j from which agent

i receives information, and pii and pij are nonnegative real
numbers designed such that pii +

∑
j∈Ωj

i
pij = 1. Consensus

can be trivially achieved if all agents can communicate their
states to all others. Then, choosing pii = pij = 1

N for all i, j
yields consensus after one round. In Sec. X-A, we make this
advantage of many-to-all communication concrete by contrast-
ing to an example with nearest-neighbor communication. As a
second step, after consensus has been reached at some time k∗,
all agents can implement the control law (analogous to (5))

ui(k) = Fi(xi(k)− xi,des(k
∗)) (8)

in order to track the agreed-upon goal xi,des(k
∗) = xdes.

The consensus algorithm presented in Example 1 is an
intuitive and basic example of distributed control. It solely
focuses on agreeing on a common target state and tracking that
target state. In real applications, however, systems typically
need to find a trade-off between the distributed control task
and, for instance, stabilizing themselves locally. One possibility
to also account for this is the use of optimal control methods,
which we present in the second example.

Example 2 (Optimal Distributed Control: Synchronization).
As in Example 1, we seek to have x1(k) and x2(k) evolve as
closely as possible, while now trading this goal off with further
objectives. To distinguish it from Example 1, we will refer to
this problem as synchronization.

As commonly done in optimal control [76], we formulate
the different objectives as a quadratic cost function

J = lim
K→∞

1

K
E

[
K−1∑
k=0

2∑
i=0

(
xi(k)TQixi(k) + ui(k)TRiui(k)

)
+(x1(k)− x2(k))TQsync(x1(k)− x2(k))

]
. (9)

The positive definite matrices Qsync, Qi, and Ri indicate
our objectives of satisfying the synchronization objective (i.e.,
keeping the difference between states small by choosing large
penalty Qsync), being stable (i.e., keeping the states close to
the equilibrium state at xi(k) = 0), and keeping the inputs
small, respectively. Using augmented states, this can be brought
into standard LQR form and be solved using readily available
tools [76]. As a solution, we obtain a static feedback matrix
F and the control input (5) for agent 1 can be written as

u1(k) = F1x̂(k) = F11x1(k) + F12x̂2(k). (10)

In general, the feedback matrix F is dense; thus, for optimal
control, every agent needs information from all other agents.
Using our wireless embedded design, this can be straightfor-
wardly supported since information sent by one agent can be
received by all others in the wireless network (property P3).

VIII. INTEGRATION AT RUN TIME

The presented integration of communication and control
at design time already fulfills many of the requirements and
provides means to solve the associated challenges of future
CPS, as outlined in Sec. III. However, decisions about the
usage of the wireless medium are taken in an uninformed
way, i.e., sensor and control messages are transmitted at
the highest rate supported by the wireless embedded system,
regardless of whether or not those messages contain relevant
information. In wireless CPS, this is undesirable for two main
reasons. First, the bandwidth in a wireless network is severely
limited, and with that also the number of systems that can
participate in a communication round (see challenge C1, limited
throughput). Second, the RF transceiver consumes power, which
is a significant factor in the overall energy consumption of the
hardware platform. For embedded sensors and mobile devices,
which are untethered and usually powered by batteries, this is
a key concern (see efficiency challenge described in Sec. III).

To mitigate both problems, the presented integration at design
time needs to be complemented by an integration at run time.
As illustrated in Fig. 5, during operation, the control system
reasons about its future communication demands and informs
the communication system accordingly. To achieve this, recent
event-triggered and self-triggered control approaches [59], [60]
can be used, where in contrast to traditional periodic or discrete-
time control [80] sensor and controller updates occur only when
needed. The communication system then uses the information
about whether an update is necessary or not to allocate freed
resources to lower priority traffic (e.g., status information or
additional sensor measurements) or to shut down resources
completely for saving energy. We call this integration at run
time control-guided communication. Below, we outline the
main ideas behind control-guided communication and refer the
reader to [8] for further details.

A. Control System

While the model of the wireless CPS derived in Sec. VI is
still valid, we need to adapt the control strategy if we envision a
control-guided communication. Apart from stabilizing a system
or solving a distributed task, the new control strategy has two



additional goals: 1) only use the wireless channel if necessary,
and 2) decide about communication demands in advance. To
achieve both goals, we employ a self-triggered control strategy.
In self-triggered control, the control algorithm decides at each
communication instant when to communicate the next time [81].
This information can be included in the data packet that would
have been sent anyways in the current communication round.
Various self-triggered control algorithms have been proposed
in the literature. Here, we present the approach from [8].

We start by defining an error e(k), which can, for instance, be
the deviation from the equilibrium for a remote control scenario
or the deviation between system states for a synchronization
task. Next, we set a triggering threshold δ. The threshold δ is
basically the deviation from the control objective that we are
willing to tolerate. A straightforward triggering design is then
to trigger communication whenever eT(k)e(k) > δ. However,
to enable the communication system to adapt to this demand,
we need to decide about the next triggering instant in advance.
Thus, at time k, we reason about when we expect the error to
exceed the threshold the next time based on all data collected
so far. Formally, we find the smallest M > 1 such that

E[eT(k +M)e(k +M)|D(k)] > δ, (11)

where D(k) is the data available at time k. The value M is
included in the data packet that is sent over the network.

In the following, we make the triggering design precise for
the distributed control scenario from Example 2.

Example 3 (Optimal Distributed Control: Synchronization
(cont.)). In Example 2, we assumed that agent 2 directly sends
its sensor measurements to agent 1. Since each agent is aware
of the full feedback matrix F , agent 2 can also, instead of
sending the sensor measurements, compute and communicate
the control input u12(k) = F12x2(k). Then, the control law
for agent 1 reads

u1(k) = F11x1(k) + u12(k). (12)

For this case, we define the error as e12(k) := u12(k)−u12(k`),
where k` denotes the last time instant agent 2 transmitted u12 to
agent 1. As shown in [8], we can find an analytical expression
for (11), which an agent checks at each communication instant.
That is, at each communication instant an agent estimates
when it needs to communicate the next time and includes this
information in the data packet.

B. Wireless Embedded System

With this approach, the number of agents participating in
the next communication round depends on the current state of
the control system. An offline derivation and distribution of
communication schedules is not sufficient anymore. Instead,
we extend the wireless embedded system design with an online
scheduler that disseminates the schedule at the beginning of
each communication round, as shown in Fig. 5. This allows
us to adapt to the demands signaled by the control system
dynamically and to either reallocate resources or to save energy
in case the control system does not need all slots in a round.

During operation each agent computes the number of rounds
M until it needs to transmit again control information. The

computed M is piggybacked onto the messages sent in the
data slots (see Fig. 6). The owner of the beacon slot acts as the
network manager: It collects all communication demands and
computes an appropriate communication schedule according
to an exchangeable policy. Depending on the application, an
appropriate policy can be implemented; for example, an energy-
saving policy may shut down all slots that are not needed
to meet the communication demands. The communication
schedule is sent by the network manager in the beacon slot,
containing information about the number of data slots and
the mapping of nodes to slots in the current communication
round. Because the network manager knows the communication
demands of all nodes, it can infer when messages are lost.
Since messages contain the future communication demand, the
network manager allocates a slot in the next communication
round for every lost message. This potentially leads to allocated
but unused resources. However, it does ensure that enough
resources are allocated to fulfill the communication demands.

IX. CYBER-PHYSICAL TESTBED

Next to a systematic co-design and a thorough theoretical
analysis, it is essential to validate wireless control solutions
on realistic cyber-physical testbeds [82]. We presented such
a testbed in [9]. In this section, we elaborate on our design
choices, the capabilities of the testbed, and the testbed exten-
sions used in this paper compared to the original version.

Fig. 8 shows the layout of the testbed used for the experi-
ments in Sec. X. It consists of 20 DPP wireless nodes, 6 real
and heterogeneous physical systems (A–F), and 4 simulated
physical systems (G–J) deployed in a robotic laboratory
environment of approximately 20 m by 30 m. To analyze the
network diameter during testbed deployment, we ran multiple
link tests. These tests indicate that for the chosen radio transmit
power of -12 dBm we obtain a 3-hop network. Communication
is subject to interference from various electronic equipment
and other experiments in the same and adjacent rooms.

A crucial design point for a cyber-physical testbed is the
choice of a physical system. The physical system should be well
understood and have fast dynamics that challenge the control,
computing, and networking elements of CPS. For these reasons,
we use cart-pole systems in our testbed, as depicted in Fig. 9.
Cart-pole systems have been widely studied in control [83], and
their dynamics match the timescales of (mechanical) systems
envisioned for smart manufacturing, such as drones.

Moreover, the testbed should be versatile in the sense that it
accommodates a variety of tasks to evaluate different aspects of
the wireless control solution. The most widely studied control
task for the cart-pole system is probably the inverted pendulum,
stabilizing the pole in an upright position through appropriate
motions of the cart. Due to the fast dynamics of the cart-pole
system, this requires fast and reliable feedback.

For wireless control, scenarios with remote controllers are
of particular interest. For example, sensor measurements need
to be communicated over multiple hops to a remote controller,
which computes and sends back the actuator commands. Our
testbed supports such scenarios, as one or multiple pendulums
may be stabilized via one or multiple remote controllers.



Figure 8. Layout of the cyber-physical testbed with 20 dual processor platform (DPP) wireless nodes, 6 real physical systems (A–F), and 4 simulated physical
systems (G–J), deployed in a robotic laboratory of approximately 20 m by 30 m. The viewing angle of the photograph is indicated in the schematic on the left.
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Figure 9. We use multiple heterogeneous cart-pole systems as physical systems
in the cyber-physical testbed. In addition to two types of real cart-pole systems
with different physical characteristics, the testbed also supports the deployment
of simulation models to scale up the number of agents in a cost-efficient way.

Besides remote control, our testbed also supports distributed
control tasks. For instance, we may attempt to synchronize
the positions of the carts to let them move in concert. The
difficulty of this distributed control task can also be varied.
In the most straightforward case, we may try to synchronize
the cart positions with unmounted poles and thus neglect the
stabilization problem. Making it more difficult, we may add
the poles but equip each pendulum with a local controller, so
stabilization happens locally at faster update intervals than syn-
chronization over the network. In this case, communication is
only needed for synchronization and not critical for closed-loop
stability. In the most challenging case, both synchronization
and stabilization happen over the (same) wireless network.

With this set of supported control tasks, we can mimic
various use cases from Fig. 2. A remotely controlled cart-pole
system may represent an agent with only sensing and actuation
units that is connected directly or over the wireless network
with an edge computing unit or a cloud-based service that
carries out the control computations. The distributed control
scenarios relate to a fleet of agents that need to coordinate
their actions, either using local or remote computing units.

Most of the envisioned applications in Sec. I require a large
number of agents. It should therefore be possible to scale up the
testbed at low cost to challenge the scalability of CPS designs.
We accommodate for this by enabling an easy integration of
simulated physical systems. A mathematical model of a cart-

pole system can be deployed on any of the DPP nodes in
our testbed. One advantage of simulated systems is a better
reproducibility because, unlike real physical systems, they
always react in the same way given the same control inputs.

In general, distributed control with heterogeneous agents is
more challenging than with homogeneous agents [84]. However,
this is what is expected in smart manufacturing, for example,
when different types of mobile robots need to work together
on a given task. To this end, our testbed includes physical
systems that can be bought off-the-shelf2 as well as self-built
cart-pole systems; only the former are used in the original
testbed [9]. Due to different hardware configurations, also the
dynamics of these systems are different. Instead of affording
different types of real cart-pole systems, distributed control with
heterogeneous agents can also be studied by altering parameters
in the mathematical model of the simulated cart-pole systems.

X. APPLICATION CASE STUDIES

In this section, we use our wireless cyber-physical testbed
to illustrate the performance and capabilities of the proposed
co-design methodology under realistic conditions. To this end,
we consider a series of experimental scenarios that resemble
envisioned application use cases of smart manufacturing:
• The AGV example from Sec. II-A includes multiple agents

that need to coordinate their actions with each other but
are stable on their own. Accordingly, in Sec. X-A, we
show how to reliably coordinate multiple stable agents. In
particular, we demonstrate the benefits of arbitrary com-
munication patterns supported by our wireless protocol.

• Distributed control becomes more difficult if we consider
unstable agents, for example, a team of drones that jointly
inspect machines in a factory. Each drone needs to stabilize
its flight, while also coordinating its actions with the other
drones in the team. Moreover, drones may join or leave
the team, or change between different tasks at run time.
We address this use case in Sec. X-B, where we show
distributed control of unstable agents with mode changes.

• Using the same distributed control scenario, we showcase
in Sec. X-C how the integration at run time allows for

2We use Quanser’s Linear Servo Base Unit with Inverted Pendulum.



scheduling additional traffic or saving energy based on the
communication resources requested by the control system.

• Besides distributed control, remote control is also of great
importance for future smart manufacturing, for instance,
when an edge devices controls a mobile robot. Sec. X-D
demonstrates remote control of multiple unstable agents.

• Because wireless communication is, in general, more
susceptible to message loss than wired communication,
we investigate in Sec. X-E the impact of message loss on
the control performance of a remotely stabilized agent.

Most of the control strategies in the following experiments
rely on a mathematical model of the physical system to be
controlled. For the cart-pole systems D and E in Fig. 8 and all
simulated systems, we use the same model as in [6], [7]. For the
self-built systems A, B, C, and F, we identify the mathematical
model using standard methods from system identification [85].
Specifically, we apply a chirp signal and estimate the A and
B matrices using the method of least squares. This yields

A ≈

(
1 −3× 10−3 8× 10−3 5× 10−4

−2× 10−3 1.02 −6× 10−3 1× 10−2

1× 10−2 −0.11 0.94 2× 10−2

1× 10−2 −2× 10−2 −8× 10−2 1.03

)

B ≈

(
3× 10−4

9× 10−4

8× 10−3

1× 10−2

)
for a sampling interval of 10 ms. In the following experiments,
we always let all 20 DPP nodes participate in the wireless
communication, but we use the physical system only for a
selected subset of the nodes, referred to as agents.

A. Average Consensus

We begin with the average consensus scenario introduced
in Sec. VII-B (Example 1). Our experiments show that:
Finding. Thanks to the many-to-all communication support, our
wireless control system reaches consensus within one time step
using a straightforward and computationally cheap algorithm.
Setup. We use 5 agents with real cart-pole systems (A–E in
Fig. 8) and different initial cart positions. Agents communicate
their state information across the 3-hop wireless network to
solve the average consensus problem explained in Sec. VII-B
(Example 1). After agreeing on a common desired position,
the agents apply control commands to track this position.

We compare two approaches. In the first one, every agent
shares its state information with all other agents, referred to
as all-to-all communication. As discussed in Example 1, we
choose pii = pij = 1/N for all i, j with N = 5. For the second
approach, we implement nearest neighbor communication; that
is, agent A can only send information to agent B, which
can only send information to agent C, and so on. We set all
weights p to 1/2. Using this approach, agents only have partial
information, which makes it more difficult to determine when
global consensus is reached. Therefore, we require that the
desired position of neighbors stays the same for 3 consecutive
communication rounds before agents start to track this position.

We set Fi = 50 (see Example 1) and introduce an additional
integrator with a gain of 5 to ensure that the desired position is
reached. The update interval of the control loop for exchanging

(a) All-to-all communication.

(b) Nearest neighbor communication.

Figure 10. Five agents with real cart-pole systems first aim to reach consensus
on their common desired position (dotted lines) by exchanging state information
over the wireless network, and then track this cart position (solid lines) using
a local control loop. It takes only 100 ms to reach consensus using all-to-all
communication compared to 2.5 s steps with nearest neighbor communication.

state information over the wireless network is 100 ms. A second
control loop for tracking the desired position becomes effective
once consensus is reached. This control loop is independent
of the first one and runs at a shorter update interval of 10 ms.
Results. Fig. 10 shows the results for all-to-all and nearest
neighbor communication; solid lines are the cart positions and
dotted lines are the calculated desired positions of the 5 agents
over time. We see from the dotted lines in Fig. 10a that with all-
to-all communication agents need only 100 ms (i.e., 1 time step)
to agree on a common desired position. Using nearest neighbor
communication, shown in Fig. 10b, this takes significantly
longer: 2.5 s (i.e., 25 time steps). Because the tracking of the
desired position is independent of the communication approach,
we see a similar performance after consensus is reached. These
results clearly showcase the benefits of the support for arbitrary
communication patterns of our wireless control system.

B. Optimal Distributed Control
Increasing the difficulty of the distributed control task, we

now turn to a scenario where agents have two control objectives:
stabilizing their mounted poles while also synchronizing their
cart positions. Because of the self-stabilization task, it is not
sufficient for the agents to initially agree on a common desired
position. Instead, the agents need to continuously exchange
their states and adapt their control input based on their own state
and the states of the other agents. To showcase the adaptability
of our co-design solution, we additionally let agents switch
between different operating modes at run time. We find that:
Finding. The support for many-to-all communication allows
for solving distributed control tasks in a straightforward way



by designing a centralized optimal controller and implementing
this controller in a distributed fashion locally on each agent.
We thus can successfully synchronize heterogeneous agents and
safely switch between different operating modes at run time.

Setup. We use 10 agents (A–F with real and G–J with simulated
physical systems), and adopt the optimal control design from
Sec. VII-B (Example 2) with parameter settings from [6], [7].
Agents exchange state updates over the network every 100 ms
for synchronization and run local control loops with an update
interval of 10 ms for stabilization. All agents start in a local
stabilization mode without synchronization. After 60 s they
switch to a synchronization mode, while still stabilizing their
poles locally. After 180 s agent A leaves the team (i.e., switches
back to local stabilization), corresponding to a second mode
change. A third and final mode change is after 300 s when agent
B also leaves the team. All other agents keep synchronizing
their cart positions until the end of the experiment.

Results. Fig. 11 shows the cart positions of all 10 agents over
time. During the initial local stabilization mode, the 10 agents
move independently of each other with different frequencies and
amplitudes (i.e., varying usage of track length). After the first
mode change, the agents synchronize their cart positions and
start to move in concert with the same frequency and similar
amplitudes. We further observe that agents A and B leave
the team at the second and third mode change, respectively,
without causing any disturbance to the other agents remaining
in the team, which continue to move in concert. All 10 agents
successfully stabilize their poles across all mode changes.

C. Online Resource Allocation

In the previous experiment, agents transmit state information
in every communication round. However, the actual communi-
cation demand varies during execution. Indeed, depending on
an agent’s current state and the communication period, it is
possible to transmit less often, allowing to dynamically reuse
freed slots for other traffic or to shut slots down completely
to save energy. Such dynamic resource allocation can be
realized through the control-guided communication approach
presented in Sec. VIII: When an agent communicates, it already
decides about the next time it needs a communication slot and
piggybacks this demand information onto its data packet. The
network manager collects these communication demands and
ensures that all demands are served. Our results show that:

Finding. Through integration at run time, we can reliably
synchronize 5 agents while serving additional traffic and saving
energy. Using less bandwidth for control comes at the cost of
reduced control performance. However, as long as about 25 %
of the bandwidth is available for control traffic, the control
performance is comparable to the periodic control baseline.

Setup. We use 5 agents (D and E with real as well as G–I with
simulated physical systems), whose cart positions are to be syn-
chronized. The control design follows the architecture outlined
in Sec. VIII-A (Example 3) with the same parameterization
as in [8]. Each communication round consists of 5 data slots,
which is sufficient to exchange control data among all 5 agents
in every round. The communication period is set to 50 ms. As

before, the local control loops for stabilization run at a shorter
update interval of 10 ms. We use an example scheduling policy
where the network manager always assigns, if possible, one of
the free slots to other traffic while the remaining free slots, if
any, are shut down to save energy.
Results. Fig. 12 shows for a representative time interval
from our experiments how the 5 data slots are used in each
communication round, for a self-trigger threshold of δ = 0.03.
We see that only about one third of the bandwidth is needed for
control traffic. The remaining bandwidth is used to serve other
traffic or shut down to save energy. Fig. 13 shows the trade-off
among control performance (in terms of the root mean squared
synchronization error), associated energy costs (in terms of
radio duty cycle for control traffic), and fraction of bandwidth
available for other traffic. We vary the fraction of bandwidth
used for control traffic through different choices of the self-
trigger threshold δ. For δ = 0 all agents communicate control
data in every round, which we use as a periodic control baseline.
We see that using less bandwidth for control leads to a drop
in control performance. However, when using only about 25 %
of the bandwidth for control, we can still obtain reasonable
control performance while being able to serve around 75 %
of additional traffic and to reduce energy costs by about 80 %
compared with the periodic control baseline.

D. Reliable Remote Control in the Face of Mobile Agents

Complementing the distributed control scenarios above, we
now look at remote control with mobile agents, a highly relevant
scenario for future smart manufacturing. We find that:
Finding. We can reliably stabilize two agents with fast dynam-
ics over a 3-hop wireless network despite agent mobility. Apart
from the practical demonstration, our co-design methodology
also allows us to provide theoretical stability guarantees.
Setup. We use two agents with real cart-pole systems (A and B)
and stabilize their poles via a remote controller running on agent
1. Thus, we have two agents that send their state information
over the 3-hop wireless network to a remote controller. The
controller computes control inputs and sends them back across
the network to both the two agents. The control design follows
the description in Sec. VII-B, concrete parameters are chosen as
in [6], [7]. Communication over the wireless network happens
at an update interval of 40 ms. Using a conservative estimate of
0.1 % for the message loss probability, we obtain a theoretical
stability guarantee. During the experiment, we pick up the
agent running the controller and move around the testbed area.
Results. Fig. 14 shows the evolution of the pole angle and the
cart position of both agents throughout the experiment. We see
that both agents stay in safe regimes over the entire duration of
the experiment and never come close to reaching the limits of
their tracks. In other words, we can safely stabilize them via the
wireless multi-hop network. Moving the controller node during
the experiment has no impact on control performance3 as the
operation of our wireless protocol is not affected by changes
in the network as long as agents remain connected [69], [71].

3A video of such an experiment can be found at https://youtu.be/
19xPHjnobkY.

https://youtu.be/19xPHjnobkY
https://youtu.be/19xPHjnobkY


Figure 11. Cart positions over time as agents stabilize their poles locally. Black lines indicate mode changes. After the first mode change, all 10 agents start to
synchronize their cart positions over a 3-hop wireless network. At the second and third mode change, one agent each drops out of the synchronization task,
while the other agents keep synchronizing their cart positions. Agents successfully synchronize and smoothly switch from one operating mode to another.
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Figure 12. Bandwidth utilization with control-guided communication over time, recorded during an experiment with 5 agents that synchronize their cart
positions over a 3-hop wireless network. Because of the self-triggered control design, the bandwidth used for control traffic in each communication round varies
between 0 and 5 slots. In almost every communication round one slot is used for other traffic, while the remaining free slots are shut down to save energy.
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Figure 13. Trade-off between control performance, the associated communication energy costs, and the ability to serve other traffic for different fractions of
bandwidth available for control traffic. Graphs show the median and the 25th and 75th percentiles. Control performance decreases when less bandwidth is used
for control traffic. On the other hand, bandwidth that is not used for control can be used to save significant communication energy or to serve other traffic.

E. Reliable Wireless Control Despite Node Failures
Great efforts are being made toward “ultra-reliable” wireless

communication, targeting message loss rates of 10−9 or even
lower. We demonstrate that, given a proper co-design of the
communication and control systems, the resulting CPS can
deal with much higher loss rates. In particular, we find that:
Finding. We can stabilize two agents via a remote controller
over a multi-hop wireless network despite 10 % message loss.
Setup. We consider the setup from the previous experiment,
but artificially introduce message loss. That is, in addition to
the possible message loss over the wireless network, we let
agent B drop 10 % of control commands according to an i.i.d.
Bernoulli process. Even at such high message loss we expect
the agent to remain stable according to our theoretical analysis.
Results. The resulting position and angle trajectories are nearly
indistinguishable from the ones shown in Fig. 14 without
artificial message loss. Thus, we do not plot them here, and
conclude that we can safely stabilize the agent despite 10 %

of message loss. Differences in the control performance can
be seen, for example, by looking at the distances traveled by
the carts during the experiment. Fig. 15a shows the traveled
distances from the previous experiment without artificial
message loss. The results in Fig. 15b with artificial message loss
show that agent B compensates the message loss by moving
slightly more. We draw three conclusions from these results:
(i) If the control and communication systems are carefully
designed in tandem, message loss rates well above typically
targeted rates can be tolerated. (ii) Instead of focusing on
“ultra-reliable” wireless communication, focus should be put
on designing wireless solutions for which the assumption of
i.i.d. message loss is a valid approximation. (iii) Message loss
has an impact on control performance; however, even for loss
rates of up to 10 %, the decrease in control performance is not
severe, as long as the losses are i.i.d. The i.i.d. assumption is
highly valid for our wireless solution, as per property P2.



Figure 14. Remote stabilization of two agents with real cart-pole systems over a 3-hop wireless network. During the experiment, the agent running the remote
controller is moved around the testbed area. The poles of both agents are safely stabilized, and the control performance is not affected by agent mobility.

(a) No artificial message loss. (b) Agent B drops 10% of messages.

Figure 15. Traveled distance of two argents while stabilizing their poles in
remote control experiments. Agent B travels slightly farther when it artificially
drops messages, which indicates a lower control performance. However, the
drop in control performance is not severe, and stability is still guaranteed.

XI. OPEN CHALLENGES AND OPPORTUNITIES

Starting from a perspective on future smart manufacturing,
we derived several requirements and associated challenges, such
as predictability of operation in terms of functional correctness
and timeliness, as well as the efficiency of operation. Con-
structing systems that satisfy these requirements is particularly
difficult in systems that have low and non-deterministically
changing resource availabilities and require a highly dynamic
operation. We presented a design methodology based on a
holistic approach that integrates distributed feedback control
and multi-hop wireless communication, both at design and
at run time (cf. Fig. 5). In particular, through integration at
design time, we were able to achieve fast distributed feedback
control on the order of tens of milliseconds over multi-hop
networks with stability guarantees also in the face of mode
changes. Further savings and flexible reallocation of resources
were achieved by having controllers inform the communication
system at run time about their current need for communication.
Taken together, integration at design time and run time allows
for high-performance distributed control while making efficient
use of the available resources, as well as for adaptive behavior
such as switching seamlessly between modes of operation.

Through this holistic approach, we were able to address many
challenges that currently prevent wireless technology from
being adopted in the manufacturing industry. However, to fully
realize the smart manufacturing vision, there are many more

challenges to be overcome. Below, we outline some important
directions for future work, structured along the main challenges
of dependability, adaptability, and efficiency (see Sec. III).

A. Dependability

The presented solution allows for reliable wireless com-
munication (fast updates, highly uncorrelated packet drops,
negligible jitter). Further, through the integration of control and
communication at design time, we can provide a formal proof of
stability, which is a base requirement for any feedback control
system. The theoretical guarantee encompasses all components
of the CPS (computation, communication, control, LTI physical
process), mode changes, and dynamic network topologies.
Formal guarantees. The type of theoretical guarantee given
herein concerns the dynamical stability of the closed-loop
control system with all main components of the CPS. It is
desirable to complement this with further guarantees and
certification. For example, formal verification of protocols,
algorithms, or entire CPS for certain safety and liveness
properties is highly relevant. While approaches like model
checking [86] hinge on the derivation of an accurate model and
can be challenging to apply for complex systems, the automatic
design of software components (e.g., scheduler, controller,
protocols) that are correct by construction is an orthogonal
approach. Also in the realm of feedback control, some aspects
have not been addressed yet. For instance, extending our
current stability guarantees to incorporate further uncertain
components, such as (partly) unknown or data-driven physical
system models and learning-based controllers, is highly relevant,
especially in the context of the envisioned adaptability in smart
manufacturing.
Fault detection and identification. The larger scale of future
smart manufacturing systems in terms of number of components
and their interconnection complexity makes the prediction,
early detection, and identification of faults highly demanding.
It is necessary to have means to observe the operation of the
various components by collecting key performance indicators
and combine the data toward information and knowledge
concerning the overall system state, causes of failures, as well
as predictive maintenance. Whereas many results are available



using advanced methods for data analysis and machine learning,
it is unclear how to employ these methods and the associated
data collection in low-resource environments. As the occurrence
of failures in a complex system is inevitable, the careful design
of contingency and fault handling strategies is another core
task. Here, the flexibility and redundancy envisioned in smart
manufacturing (e.g., in terms of agents) can be of help.

Distributed architectures. With the help of smart manu-
facturing, production processes are becoming significantly
more flexible and versatile while minimizing its operators’
management effort. In traditional manufacturing systems, the
collaboration between machines and other CPS devices is
mainly controlled by a central management system. Such a
concept has a high risk of failure since the overall system’s
availability and reliability largely depend on the underlying
communication network and the centralized management unit’s
availability. At the same time, this centralized approach is no
longer manageable with the increasing number of collaborating
CPS devices and the vast complexity managing a large number
of interconnected devices. The same observation holds for
centralized scheduling and coordination to synchronize and
schedule the computational as well as communication tasks.
Better scalability and fault tolerance concepts are needed toward
fully distributed approaches without a central scheduler or
controller while still being able to provide formal guarantees
for the correct operation. As an attractive middle ground, such
distributed operation may also be temporary or limited to
certain parts of the hierarchy (e.g., a specific automation cell).

Security and privacy. Deliberately, the discussion did not
touch on any security- or privacy-related challenges in the
design of future smart manufacturing systems. One may
argue that well-known security concepts from the conventional
computing domain can be simply applied and are sufficient.
Obviously, this is not the case when considering problems like
side-channel attacks via the physical embedding of sensors
and actuators, key-management over the whole lifetime of the
large number of distributed components, novel attack scenarios
exploring the low-power wireless connectivity, as well as
attacking the overall system functionality by manipulating
sensor readings as available to the control algorithms. Likewise,
when sharing data and methods across users, factories, and
possibly companies, important privacy concerns must be
answered. Novel security and privacy methods are thus needed
to address the unique challenges of future smart manufacturing
systems.

B. Adaptability

Because of the underlying synchronous transmissions, the
presented wireless control solution is ignorant of any graph
structure of the network and requires no routing. Hence, the
solution is inherently adaptive to dynamic nodes, which is key
to provide the mobility needed in many smart manufacturing
scenarios. Furthermore, the current design and stability guar-
antees provide for some adaptability when switching between
different operation modes. The set of possible modes, however,
must be known in advance.

Enhanced adaptability at run time. While in some scenarios
such as highly safety-critical ones, it is plausible that the set of
possible application requirements and thus operation modes is
fixed and known beforehand, it is vital for the vision of smart
manufacturing to enhance adaptability also to situations that
are previously unknown at design time. For example, when
robots with new manufacturing capabilities are added or for
highly individualized tasks, the smart manufacturing system
must adapt at run time. The goals of instantaneous adaptation
to unknowns while giving guarantees throughout operation
are obviously conflicting in general. Providing meaningful
solutions and trade-offs tailored to domain and problem classes
is thus a formidable task for basic research. A promising
direction for enhanced adaptability is the combination of recent
advances in machine learning and data science with control
and communication, as discussed next.

Learning-based control. In the complete vision of smart
manufacturing, properties of the computation and commu-
nication environment, as well as of the controlled physical
processes, are constantly changing. In addition, when scaling
the complexity and size of smart manufacturing systems,
it is increasingly unfeasible to manually derive appropriate
plant and control algorithms that integrate computation and
(wireless) communication, even if they are parameterizable.
Therefore, recent approaches attempt to combine classical
control-theoretic approaches with data-driven concepts, e.g.,
machine learning. Again, it is unclear how these novel design
approaches that are partially based on massive data collection
can be viably implemented in low-resource environments, and
how dependability requirements can be met alongside.

C. Efficiency

The presented solution builds on low-power wireless commu-
nication technology, which is in contrast, e.g., to envisioned 5G
communication. While there are potential and huge expectations
associated with future 5G solutions, the industry is also facing
significant issues such as high running costs, network infras-
tructure not being owned by the manufacturer, insufficient data
protection, and current inability to meet certain requirements on
latency, jitter, and reliability. Here, we presented an alternative
solution that addresses similar use cases as being discussed in
the context of the 5G vision, yet is based on existing commodity
hardware.

In addition to making use of low-power hardware, we further
improved efficiency utilizing resource-aware control algorithms
and the integration of control and communication at run
time. Through the concept of control-guided communication,
communication bandwidth can be flexibly allocated at run time
to the control processes that are in need or be saved otherwise.
While constituting only a first approach toward such integration
at run time, we were already able to demonstrate significant
resource savings and flexible reallocation.

Truly event-triggered wireless control. The presented solu-
tion for control-guided communication is based on a self-
triggered control approach. With self-triggered control, the
control algorithm decides at the time of the current control



computation, when the next control update needs to happen. In-
cluding this information in the current data packet, the network
manager can plan resource allocation in advance and, in this
way, ensure efficient use of communication bandwidth. The
downside of the self-triggered approach, however, is that the
need for communication must be planned in advance. For better
efficiency and also adaptability, it would be desirable to instead
decide instantaneously about the need for communication.
While in the control community, many so-called event-triggered
estimation and control approaches have been developed in the
last two decades [59], [60], it remains largely unclear whether
and how these can be integrated with the communication
system and indeed result in demonstrable resource reallocation,
savings, or other advantages for wireless systems in practice.

Advances in wireless communication. Scaling up the network
diameter, number of agents, or supporting higher update rates
may require faster low-power wireless physical layers (e.g.,
Bluetooth Low Energy (BLE 5), ultra-wide band communica-
tion). Further, protocol innovations such as network coding have
the potential of increasing the effective capacity of the network
and thus enhancing efficiency. These and other advances on
the physical and protocol layers will directly benefit wireless
control approaches as the one presented herein.

D. Real-world Deployment

All core aspects of our presented wireless control solution
have been deployed and demonstrated on the CPS testbed
(Sec. IX), which we developed for this research. We deliberately
chose the components of the testbed to be representative of
many smart manufacturing use cases, as well as to pose a
real challenge for the state of the art in wireless control. For
instance, we opted for inverted pendulums as physical processes
because they represent prototypical control tasks and require
fast feedback for their operation at their unstable equilibrium.
In addition to many hours of testing in the lab, we have also
deployed our CPS testbed on multiple occasions outside the
laboratory such as during a demonstration at the 2019 Cyber-
Physical Systems and Internet-of-Things Week in Montreal,
Canada.4 Despite being in a room with hundreds of conference
attendees and much other wireless equipment operating in
parallel, we were able to run the coordination and remote
stabilization demos similar to those presented in Sec. X-B and
Sec. X-D for about three hours without a single failure.

At the same time, we are convinced that more real-world
demonstrators and deployments will be essential on the way
of making wireless control a reliable and accepted technology
in smart manufacturing. In addition to theoretical proofs based
on rigorous analysis, it is key to systematically evaluate the
end-to-end system with all hardware and software components
on physical platforms and real-world wireless networks in
scenarios that resemble as close as possible the targeted smart
manufacturing use cases. We as a community thus need more
of such testbeds with robots, flying drones, conveyor belts, etc.
Ideally, these testbeds are open and extensible, and researchers
around the world can use them. Besides practical validation,

4This video gives an impression: https://youtu.be/AtULmfGkVCE.

such testbeds are also needed to enable comparability and
reproducibility of research claims and results, and they may
serve as a common benchmarking platform. To this end, efforts
on testbeds in control and communication should no longer
run separately, but be united and work toward a common goal.
Ultimately, the final step is then, of course, real-world trials in
actual manufacturing and production plants. But without prior
demonstrators, the companies will be unlikely to allow this.
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[36] J. Araújo, M. Mazo, A. Anta, P. Tabuada, and K. H. Johansson, “System
architectures, protocols and algorithms for aperiodic wireless control
systems,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1,
2014.

[37] J. Eker, A. Cervin, and A. Hörjel, “Distributed wireless control using
bluetooth,” in IFAC Conference on New Technologies for Computer
Control (NTCC), 2001.

[38] N. J. Ploplys, P. A. Kawka, and A. G. Alleyne, “Closed-loop control
over wireless networks,” IEEE Control Systems Magazine, vol. 24, no. 3,
2004.

[39] N. W. Bauer, S. B. Van Loon, N. Van De Wouw, and W. M. Heemels,
“Exploring the boundaries of robust stability under uncertain communica-

tion: An ncs toolbox applied to a wireless control setup,” IEEE Control
Systems Magazine, vol. 34, no. 4, 2014.

[40] S. Heshmati-Alamdari, A. Eqtami, G. C. Karras, D. V. Dimarogonas, and
K. J. Kyriakopoulos, “A self-triggered visual servoing model predictive
control scheme for under-actuated underwater robotic vehicles,” in IEEE
Int. Conf. on Robotics and Automation, 2014.

[41] C. Santos, M. Mazo Jr, and F. Espinosa, “Adaptive self-triggered control
of a remotely operated p3-dx robot: Simulation and experimentation,”
Robotics and Autonomous Systems, vol. 62, no. 6, 2014.

[42] C. Santos, F. Espinosa, E. Santiso, and M. Mazo, “Aperiodic linear
networked control considering variable channel delays: Application to
robots coordination,” Sensors, vol. 15, no. 6, 2015.

[43] A. Stanoev, A. Aijaz, A. Portelli, and M. Baddeley, “Closed-loop control
over wireless – remotely balancing an inverted pendulum on wheels,” in
International Conference on Embedded Wireless Systems and Networks
(EWSN), 2020.

[44] A. Hernandez, J. Faria, J. Araújo, P. Park, H. Sandberg, and K. H.
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