Archiv / Archive
Wintersemester 2020/21: Online-Lehrveranstaltungskatalog
Winter term 2020/21: Course Catalogue
Abkürzungen / abbreviations:
- V, VO = Vorlesung / lecture, Ü = Übung / problem class, T = Tutorium / tutorial, S = Seminar / seminar
-
Categories: Zielgruppe = audience, Klassifizierung = classification, Inhalt = Curriculum, Einschreibung = inscription,
Leistungsnachweis = type of examination,
Dozent/Zeit/Ort = Lecturer/Time/Venue
Für die Fakultät Elektrotechnik und Informationssystemtechnik
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Elektrotechnik) |
6+4+0 |
F01/485 |
Zielgruppe |
Studiengang Elektrotechnik (1. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
Abitur |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs |
Dozent∗in |
Sasvári |
V |
|
|
|
Di Tella |
Ü |
Kursassistent |
|
|
Für die Übungen siehe OPAL-Kurs. |
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie über o.g. OPAL-Kurs. |
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Informationssystemtechnik) |
6+4+0 |
F01/485* |
Zielgruppe |
Studiengang Informationssystemtechnik (1. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs |
Dozent∗in |
Sasvári |
V |
|
|
|
Di Tella |
Ü |
Kursassistent |
|
|
Für die Übungen siehe OPAL-Kurs. |
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie über o.g. OPAL-Kurs. |
| |
Modul MT-01 04 01: Algebraische und analytische Grundlagen (Mechatronik) |
6+4+0 |
F01/485+ |
Zielgruppe |
Studiengang Mechatronik (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs |
Dozent∗in |
Sasvári |
V |
|
|
|
Di Tella |
Ü |
Kursassistent |
|
|
Für die Übungen siehe OPAL-Kurs. |
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie über o.g. OPAL-Kurs. |
| |
Modul RES-G01: Algebraische und analytische Grundlagen (Regenerative Energiesysteme) |
6+4+0 |
F01/485++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs |
Dozent∗in |
Sasvári |
V |
|
|
|
Di Tella |
Ü |
Kursassistent |
|
|
Für die Übungen siehe OPAL-Kurs. |
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie über o.g. OPAL-Kurs. |
| |
Modul ET-01 04 04: Algebra (Teil 1, Informationssystemtechnik) |
1+1+0 |
F01/181 |
Zielgruppe |
Studierende Informationssystemtechnik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Ausgewählte Kapitel der Angewandten Algebra, Methoden der algebraischen Modellierung |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
Dozent∗in |
Baumann |
V |
|
|
|
Starke |
Ü |
Kursassistent |
|
|
Für die Übungen siehe OPAL-Kurs. |
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie über den o.g. OPAL-Kurs. |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Elektrotechnik) |
2+2+0 |
F01/687 |
Zielgruppe |
Studiengang Elektrotechnik (3. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
OPAL |
OPAL-Kurs |
Dozent∗in |
Franz |
V |
|
|
|
Feldmann |
Ü |
Kursassistentin |
|
|
Für die Übungen siehe OPAL-Kurs. |
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie über den o.g. OPAL-Kurs. |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie ( Informationssystemtechnik ) |
2+2+0 |
F01/687* |
Zielgruppe |
Studiengang Informationssystemtechnik (3. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
OPAL |
OPAL-Kurs |
Dozent∗in |
Franz |
V |
|
|
|
Feldmann |
Ü |
Kursassistentin |
|
|
Für die Übungen siehe OPAL-Kurs. |
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie über den o.g. OPAL-Kurs. |
| |
Modul MT-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Mechatronik) |
2+2+0 |
F01/687+ |
Zielgruppe |
Studiengang Mechatronik (3. Sem.) - (gemeinsam mit Elektrotechnik, Informationssystemtechnik) |
Vorkenntnisse |
Module MT-01-04-01, MT-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
OPAL |
OPAL-Kurs |
Dozent∗in |
Franz |
V |
|
|
|
Feldmann |
Ü |
Kursassistentin |
|
|
Für die Übungen siehe OPAL-Kurs. |
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie über den o.g. OPAL-Kurs. |
| |
Modul RES-G05: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Regenerative Energiesysteme) |
2+2+0 |
F01/687++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (3. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module RES-G01, RES-G02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
Dozent∗in |
Franz |
V |
|
|
|
Feldmann |
Ü |
Kursassistentin |
|
|
Für die Übungen siehe OPAL-Kurs. |
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie über den o.g. OPAL-Kurs. |
| |
Modul BIW3-12: Fortgeschrittene mathematische Methoden für Ingenieure |
2+1+0 |
F01/284 |
Zielgruppe |
Studierende des Ingenieurwesens, insbesondere des Bauingenieurwesens und Elektroingenieurwesens |
Vorkenntnisse |
Fundierte mathematische Kenntnisse aus den Modulen des Grund- und Grundfachstudiums |
Inhalt |
Inhalt dieses zwei-semestrigen Moduls sind die wichtigsten mathematischen Grundlagen für die Beschreibung von Fragen verschiedener ingenieurwissenschaftlicher Gebiete wie zum Beispiel Kontinuumsmechanik, Strömungsmechanik, Elektrodynamik usw. Einen weiteren Schwerpunkt bilden die Schlüsselideen der Tensoranalysis, Operatortheorie, Approximationstheorie und der Variationsrechnung. |
Einschreibung |
- |
Leistungsnachweis |
lt. Prüfungsordnung |
OPAL |
OPAL-Katalog Mathematik: WS 20/21 > Andere Fachrichtungen und Fakultäten (Kurse ggf. noch in Vorbereitung) |
Dozent∗in |
Chill |
VW |
|
|
|
Fasangová |
ÜW |
|
|
|
>>> Aktuelle Informationen zum Ablauf der Veranstaltung erhalten Sie später über einen OPAL-Kurs (z.Z. noch in Vorbereitung) |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs