Archiv / Archive
Wintersemester 2019/2020: Online-Lehrveranstaltungskatalog
Winter term 2019/2020: Course Catalogue
Abkürzungen / abbreviations:
V, VO = Vorlesung / lecture, Ü = Übung / problem class, T = Tutorium / tutorial, S = Seminar / seminar
Categories: Zielgruppe = audience, Klassifizierung = classification, Inhalt = Curriculum, Einschreibung = inscription,
Leistungsnachweis = type of examination,
Dozent/Zeit/Ort = Lecturer/Time/Venue
Gesamtübersicht: Institut für Geometrie / List of all Courses: Institute of Geometry
• • • 2. Studienjahr / 2nd year (Bachelor, Staatsexamen Lehramt) • • •
| |
Modul Math Ba GEO: Geometrie |
3+1+0 |
F01/121 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.), Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Lineare Algebra und Analytische Geometrie I und II |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Krähmer |
V |
Mo / Mon |
3. DS (11:10-12:40) |
WIL A317 |
gerade Woche / even week |
|
|
|
Krähmer |
V |
Di / Tue |
2. DS (09:20-10:50) |
WIL A317 |
|
|
|
|
Mahaman |
Ü |
Mo / Mon |
3. DS (11:10-12:40) |
WIL A317 |
ungerade Woche / odd week |
|
|
|
Mahaman |
Ü |
Di / Tue |
3. DS (11:10-12:40) |
WIL C205 |
ungerade Woche / odd week |
|
|
|
Mahaman |
Ü |
Fr / Fri |
4. DS (13:00-14:30) |
WIL C103 |
ungerade Woche / odd week |
Kursassistentin |
|
• • • 3. Studienjahr / 3rd year (Bachelor, Staatsexamen Lehramt) • • •
| |
Modul Math Ba DGEO: Differentialgeometrie |
3+1+0 |
F01/331 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Lehramt an Gymnasien (9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-GEO, Math-Ba-LAAG und Math-Ba-PROG |
Inhalt |
Differentialgeometrie ist eines der zentralen Gebiete der Mathematik, welche durch die Methoden der Analysis und Algebra geometrische Objekte namens Mannigfaltigkeiten analysiert. Diese kann man sich als 'mehrdimensionale Flächen' vorstellen. Beispiele dafür sind Sphären, Tori, Möbiusband, Kleinsche Flasche etc. In dieser Vorlesung werden wir die Grundlagen der Theorie der Mannigfaltigkeiten (zunächst an Beispielen von Kurven und Flächen) kennenlernen und erste wichtige Resultate beweisen. |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul Math Ba HANA: Höhere Analysis |
3+1+0 |
F01/231 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Lehramt an Gymnasien (9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Schuricht |
V |
Di / Tue |
3. DS (11:10-12:40) |
WIL A120 |
|
|
|
|
Schuricht |
V |
Do / Thu |
3. DS (11:10-12:40) |
WIL C129 |
gerade Woche / even week |
|
|
|
N.N. |
Ü |
Mi / Wed |
6. DS (16:40-18:10) |
WIL C104 |
ungerade Woche / odd week |
in englischer Sprache |
|
|
Tietz |
Ü |
Do / Thu |
3. DS (11:10-12:40) |
WIL C129 |
ungerade Woche / odd week |
|
|
| |
Modul Math Ba SEM: Seminar Analysis |
0+2+0 |
F01/235 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Module Math-Ba-GDIM, ANAG |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
| |
Modul Math Ba SEM - Seminar Geometrie |
0+2+0 |
F01/335 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Lineare Algebra, Geometrie, Analysis |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
• • • 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma AMGEO: Algebraische Methoden in der Geometrie |
3+1+0 |
F01/342 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
laut Modulbeschreibung |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma PDEANA: Partielle Differentialgleichungen – Analytische Grundlagen |
3+1+0 |
F01/247 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Pflichtmodul. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Analysis-Veranstaltungen des Bachelor-Studiengangs |
Inhalt |
Hinweis: Das Modul schafft Voraussetzungen für das Modul Math-Ma-MODSEM. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request |
| |
Modul Math Ma WIA: Mathematik der Quanteninformationstheorie / Mathematics of Quantum Information Theory |
2+2+0 |
F01/340 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Zuordnung zum Studienschwerpunkt Analysis und Stochastik Master WMath: Pflichtmodul. |
Inhalt |
DE:
In dieser Veranstaltung (gemischt als Seminar / Vorlesung organisiert) werden wir mathematische Objekte studieren, die man in Termen von Matrizen und Operatoren auf Hilberträumen beschreiben kann und die Anwendungen in der Quanteninformationstheorie haben. Ein erstaunliches Phänomen (welches auch im Experiment nachweisbar ist), welches wir in dieser Veranstaltung mathematisch verstehen wollen, besteht darin, dass der bloße Zugang von zwei getrennten Experimentatoren zu sogenannten korrelierten Zuständen (ohne Informationsaustausch!) zu besseren Strategien in gewissen einfachen mathematischen Spielen führen kann. Eine weiteres interessantes Resultat auf diesem Gebiet besteht darin, dass eine klassische rein mathematische Vermutung aus dem Bereich der Operatoralgebren (Connes-Einbettungsvermutung, 1976) sich als äquivalent zu einer Frage der Quanteninformationstheorie herausstellt (Tsirelson-Problem, 2006).
EN:
This course is a mix of a lecture course and a seminar / reading group. We will study mathematical objects which can be described in terms of complex matrices or operators on a Hilbert space and which have applications in Quantum Information Theory (QIT). A surprising (experimentally checkable) phenomenon which we would like to understand here is the following: the mere access of two separated experimenters to so-called correlated states (but without any information exchange!) can lead to better strategies in certain mathematical games. A further (and relatively new) interesting fact is a equivalence between the classical Connes' Embedding Conjecture from operator algebras (1976) and a question from QIT (Tsirelson's Problem, 2006). |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
Sprache / Language |
English |
| |
Modul MN-SEGY-MAT-MVERT: Differentialgeometrie |
3+1+0 |
F01/331* |
Zielgruppe |
Staatsexamen: Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-GEO, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba DGEO - Differentialgeometrie: Differentialgeometrie ist eines der zentralen Gebiete der Mathematik, welche durch die Methoden der Analysis und Algebra geometrische Objekte namens Mannigfaltigkeiten analysiert. Diese kann man sich als 'mehrdimensionale Flächen' vorstellen. Beispiele dafür sind Sphären, Tori, Möbiusband, Kleinsche Flasche etc. In dieser Vorlesung werden wir die Grundlagen der Theorie der Mannigfaltigkeiten (zunächst an Beispielen von Kurven und Flächen) kennenlernen und erste wichtige Resultate beweisen. |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY-MAT-MVERT: Höhere Analysis |
3+1+0 |
F01/231* |
Zielgruppe |
Staatsexamen: Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent∗in/Zeit/Ort |
Schuricht |
V |
Di / Tue |
3. DS (11:10-12:40) |
WIL A120 |
|
|
|
|
Schuricht |
V |
Do / Thu |
3. DS (11:10-12:40) |
WIL C129 |
gerade Woche / even week |
|
|
|
N.N. |
Ü |
Mi / Wed |
6. DS (16:40-18:10) |
WIL C104 |
ungerade Woche / odd week |
in englischer Sprache |
|
|
Tietz |
Ü |
Do / Thu |
3. DS (11:10-12:40) |
WIL C129 |
ungerade Woche / odd week |
|
|
| |
Modul MN-SEGY/SEBS-MAT-SEM: Mathematisches Seminar - Analysis |
0+0+2 |
F01/772 |
Zielgruppe |
Staatsexamen: Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 9. Sem. |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
| |
Modul MN-SEGY/SEBS-MAT-SEM: Mathematisches Seminar - Geometrie |
0+0+2 |
F01/773 |
Zielgruppe |
Staatsexamen: Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 9. Sem. |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Seminar "Geometrie" |
0+2+0 |
F01/355 |
Zielgruppe |
Mathematische Masterstudiengänge u.a. Interessenten |
Inhalt |
Seminar Geometrie: Vorträge zur Geometrie und ihren Anwendungen Graduate Lectures in Mathematics: This series of lectures aims at Master's and PhD students in mathematics and offers a first glimpse into topics which are not routinely taught in our MSc/PhD programme. The emphasis is to introduce new concepts and techniques, and not to present full mathematical details. Bekanntgabe der Themen durch Aushang und Internet (siehe Link) |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
Dozent∗in/Zeit/Ort |
Thom |
S |
Di / Tue |
5. DS (14:50-16:20) |
WIL A120 |
|
|
|
| |
Seminar "Algebra, Geometrie und Kombinatorik" |
0+2+0 |
F01/155* |
Zielgruppe |
Master-Studiengang Mathematik |
Inhalt |
Vorträge zu aktuellen Forschungsthemen der Institute für Algebra und für Geometrie sowie eingeladener Gäste. Alle Interessenten sind herzlich eingeladen. Die Themen werden im Aushang und im Internet bekannt gegeben. |
Einschreibung |
- |
Leistungsnachweis |
nach Vereinbarung |
Internet |
Aktuelle Vorträge |
| |
Arbeitsgemeinschaft "Geometrie" |
0+2+0 |
F01/356 |
Zielgruppe |
Masterstudiengänge Mathematik und Technomathematik u.a. Interessenten |
Inhalt |
This is the ”Monday seminar“ where members of our research group give talks on their research or other interesting mathematics we try to understand together (usually related to our research interests). Everybody is welcome to attend and to contribute. |
Einschreibung |
- |
Leistungsnachweis |
- |
| |
Seminar "Geometrische Methoden in der Mathematik" |
0+2+0 |
F01/357 |
Zielgruppe |
Masterstudiengänge Mathematik und Technomathematik u.a. Interessenten |
Inhalt |
In diesem Seminar erklären wir uns in informellem Rahmen, was wir in letzter
Zeit gelesen oder verstanden haben, oder tun dies gleich gemeinsam. Thematisch geht es dabei um nichtkommutative Algebra und Geometrie, Hopfalgebren, Darstellungstheorie, algebraische Geometrie, homologische Algebra oder Kategorientheorie. |
Einschreibung |
- |
Leistungsnachweis |
- |
| |
Arbeitsgemeinschaft Analysis & Stochastik |
0+2+0 |
F01/460* |
Zielgruppe |
Master-Studiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Stochastics, Analysis |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Dozent∗in/Zeit/Ort |
AG Ana&Sto |
AG |
Do / Thu |
13 - 16 Uhr |
WIL A124 |
|
|
|
|
Die Vorträge finden im Zeitfenster 13-16 Uhr statt - siehe Webseite für Ankündigungen |
• • • Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul PHY-Ba-Ma-LA: Lineare Algebra |
4+2+0 |
F01/390 |
Zielgruppe |
Bachelor-Studiengang Physik (1. Sem.) |
Vorkenntnisse |
Abitur |
Inhalt |
Lineare Algebra (und analytische Geometrie als ein Teil davon) ist der in der Physik wohl am häufigsten benutzte Teil der Mathematik. In dieser Vorlesung werden dann die Grundlagen der linearen Algebra studiert und einige Zusammenhänge mit ihren geometrischen und physikalischen Interpretationen dargestellt. |
Einschreibung |
Bitte im OPAL-Kurs in die Gruppe "Kursteilnehmer" und in die Übungsgruppen einschreiben. |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs mit Einschreibung |
Dozent∗in/Zeit/Ort |
Alekseev |
V |
Di / Tue |
1. DS (07:30-09:00) |
HSZ/04/H |
|
|
|
|
Alekseev |
V |
Mi / Wed |
4. DS (13:00-14:30) |
TRE MATH |
|
|
|
|
Feilitzsch |
Ü |
Mo / Mon |
2. DS (09:20-10:50) |
SE2/123/U |
|
|
|
|
Tutor |
Ü |
Mo / Mon |
2. DS (09:20-10:50) |
WIL B321 |
|
|
|
|
Dowerk |
Ü |
Mi / Wed |
3. DS (11:10-12:40) |
WIL A221 |
|
|
|
|
Dowerk |
Ü |
Do / Thu |
3. DS (11:10-12:40) |
WIL C103 |
|
|
|
|
Riebe |
Ü |
Do / Thu |
6. DS (16:40-18:10) |
WIL C106 |
|
|
|
|
Bitte beachten: Das 1. Übungsblatt wird im OPAL-Kurs schon vor Vorlesungsbeginn veröffentlicht, die Übungen finden schon in der ersten Vorlesungswoche (ab Montag 14.10.) statt! |
| |
Darstellende Geometrie und CAD (Architektur) |
1+1+0 |
F01/381 |
Zielgruppe |
Studierende Architektur |
Vorkenntnisse |
- |
Inhalt |
Das Modul Darstellende Geometrie und CAD vermittelt Abbildungsmethoden und Lösungsstrategien zur konstruktiven Bewältigung räumlicher Fragestellungen im architektonischen Kontext. Die Studierenden verfügen nach Abschluss des Moduls über ein strukturiertes räumliches Vorstellungsvermögen und beherrschen die Grundlagen für die maßgenaue und anschauliche Darstellung von Architektur in Axonometrien und Perspektiven. Sie sind in der Lage, das erworbene Wissen auch auf Freihandskizzen und CAD-Repräsentationen zu übertragen und somit entwerfend in Architekturdarstellungen einzugreifen. |
Einschreibung |
- |
Leistungsnachweis |
Zwei Belege, Klausur |
Dozent∗in/Zeit/Ort |
Lordick |
V |
Mo / Mon |
4. DS (13:00-14:30) |
ASB 120/H |
gerade Woche / even week |
|
|
|
Lordick |
Ü |
Mo / Mon |
5. DS (14:50-16:20) |
WIL B122 |
gerade Woche / even week |
|
|
|
Lordick |
Ü |
Mo / Mon |
5. DS (14:50-16:20) |
WIL B122 |
ungerade Woche / odd week |
|
|
|
Lordick |
Ü |
Mi / Wed |
5. DS (14:50-16:20) |
WIL B122 |
gerade Woche / even week |
|
|
|
Lordick |
Ü |
Mi / Wed |
5. DS (14:50-16:20) |
WIL B122 |
ungerade Woche / odd week |
|
|
| |
Modul BIW1-09 Technische Grundlagen: Konstruktive Geometrie (Bauingenieurwesen) |
1+1+0 |
F01/385 |
Zielgruppe |
Studierende Bauingenieurwesen (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Die Lehrveranstaltung vermittelt Grundkenntnisse und praktische Anwendungen von konstruktiv geometrischen Verfahren. Sie dient der Entwicklung eines strukturierten räumlichen Vorstellungsvermögens und befähigt zur Herstellung und sachgerechten Interpretation von technischen Zeichnungen und CAD-Repräsentationen. Räumliche Objekte und Aufgaben werden anschaulich dargestellt und konstruktiv gelöst. |
Einschreibung |
- |
Leistungsnachweis |
Zwei Belege, Klausur |
Dozent∗in/Zeit/Ort |
Lordick |
VO |
Di / Tue |
4. DS (13:00-14:30) |
TRE MATH |
gerade Woche / even week |
|
|
|
Tutor |
ÜO |
Di / Tue |
4. DS (13:00-14:30) |
WIL C205 |
ungerade Woche / odd week |
|
|
|
Lordick |
ÜO |
Di / Tue |
4. DS (13:00-14:30) |
WIL B122 |
ungerade Woche / odd week |
|
|
|
Nestler |
ÜO |
Do / Thu |
4. DS (13:00-14:30) |
WIL B122 |
gerade Woche / even week |
|
|
|
Nestler |
ÜO |
Do / Thu |
4. DS (13:00-14:30) |
WIL B122 |
ungerade Woche / odd week |
|
|
|
Nestler |
ÜO |
Do / Thu |
5. DS (14:50-16:20) |
WIL C103 |
gerade Woche / even week |
|
|
|
Nestler |
ÜO |
Do / Thu |
5. DS (14:50-16:20) |
WIL C103 |
ungerade Woche / odd week |
|
16.09.2019: Übungen aktualisiert |
| |
Modul D-WW-MV: Mathematik Vertiefung (Wirtschaftsingenieurwesen) |
2+2+0 |
F01/483 |
Zielgruppe |
Studierende Wirtschaftsingenieurwesen (3. Sem.) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs