Archiv / Archive
Wintersemester 2019/2020: Online-Lehrveranstaltungskatalog
Winter term 2019/2020: Course Catalogue
Abkürzungen / abbreviations:
V, VO = Vorlesung / lecture, Ü = Übung / problem class, T = Tutorium / tutorial, S = Seminar / seminar
Categories: Zielgruppe = audience, Klassifizierung = classification, Inhalt = Curriculum, Einschreibung = inscription,
Leistungsnachweis = type of examination,
Dozent/Zeit/Ort = Lecturer/Time/Venue
Für die Fakultät Elektrotechnik und Informationssystemtechnik
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Elektrotechnik) |
6+4+0 |
F01/485 |
Zielgruppe |
Studiengang Elektrotechnik (1. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
Abitur |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Informationssystemtechnik) |
6+4+0 |
F01/485* |
Zielgruppe |
Studiengang Informationssystemtechnik (1. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
| |
Modul MT-01 04 01: Algebraische und analytische Grundlagen (Mechatronik) |
6+4+0 |
F01/485+ |
Zielgruppe |
Studiengang Mechatronik (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
| |
Modul RES-G01: Algebraische und analytische Grundlagen (Regenerative Energiesysteme) |
6+4+0 |
F01/485++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
| |
Modul ET-01 04 04: Algebra (Teil 1, Informationssystemtechnik) |
1+1+0 |
F01/181 |
Zielgruppe |
Studierende Informationssystemtechnik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Ausgewählte Kapitel der Angewandten Algebra, Methoden der algebraischen Modellierung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Baumann |
V |
Di / Tue |
3. DS (11:10-12:40) |
WIL B321 |
gerade Woche / even week |
|
|
|
Starke |
Ü |
Fr / Fri |
3. DS (11:10-12:40) |
WIL C104 |
gerade Woche / even week |
|
|
|
Starke |
Ü |
Fr / Fri |
3. DS (11:10-12:40) |
WIL C104 |
ungerade Woche / odd week |
|
|
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Elektrotechnik) |
2+2+0 |
F01/687 |
Zielgruppe |
Studiengang Elektrotechnik (3. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zu den Lehrveranstaltungen |
Dozent∗in/Zeit/Ort |
Sasvári |
V |
Mo / Mon |
4. DS (13:00-14:30) |
TRE PHYS |
|
|
16.09.2019: Änderung für den Hörsaal eingetragen |
|
Di Tella |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie ( Informationssystemtechnik ) |
2+2+0 |
F01/687* |
Zielgruppe |
Studiengang Informationssystemtechnik (3. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zu den Lehrveranstaltungen |
Dozent∗in/Zeit/Ort |
Sasvári |
V |
Mo / Mon |
4. DS (13:00-14:30) |
TRE PHYS |
|
|
16.09.2019: Änderung für den Hörsaal eingetragen |
|
Di Tella |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul MT-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Mechatronik) |
2+2+0 |
F01/687+ |
Zielgruppe |
Studiengang Mechatronik (3. Sem.) - (gemeinsam mit Elektrotechnik, Informationssystemtechnik) |
Vorkenntnisse |
Module MT-01-04-01, MT-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zu den Lehrveranstaltungen |
Dozent∗in/Zeit/Ort |
Sasvári |
V |
Mo / Mon |
4. DS (13:00-14:30) |
TRE PHYS |
|
|
16.09.2019: Änderung für den Hörsaal eingetragen |
|
Di Tella |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul RES-G05: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Regenerative Energiesysteme) |
2+2+0 |
F01/687++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (3. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module RES-G01, RES-G02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zu den Lehrveranstaltungen |
Dozent∗in/Zeit/Ort |
Sasvári |
V |
Mo / Mon |
4. DS (13:00-14:30) |
TRE PHYS |
|
|
16.09.2019: Änderung für den Hörsaal eingetragen |
|
Di Tella |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul BIW3-12: Fortgeschrittene mathematische Methoden für Ingenieure |
2+1+0 |
F01/284 |
Zielgruppe |
Studierende des Ingenieurwesens, insbesondere des Bauingenieurwesens und Elektroingenieurwesens |
Vorkenntnisse |
Fundierte mathematische Kenntnisse aus den Modulen des Grund- und Grundfachstudiums |
Inhalt |
Inhalt dieses zwei-semestrigen Moduls sind die wichtigsten mathematischen Grundlagen für die Beschreibung von Fragen verschiedener ingenieurwissenschaftlicher Gebiete wie zum Beispiel Kontinuumsmechanik, Strömungsmechanik, Elektrodynamik usw. Einen weiteren Schwerpunkt bilden die Schlüsselideen der Tensoranalysis, Operatortheorie, Approximationstheorie und der Variationsrechnung. |
Einschreibung |
- |
Leistungsnachweis |
lt. Prüfungsordnung |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs