Archiv / Archive
Sommersemester 2019: Online-Lehrveranstaltungskatalog
Summer term 2019: Course Catalogue
Abkürzungen / abbreviations:
V, VO = Vorlesung / lecture, Ü = Übung / problem class, T = Tutorium / tutorial, S = Seminar / seminar
Categories: Zielgruppe = audience, Klassifizierung = classification, Inhalt = Curriculum, Einschreibung = inscription,
Leistungsnachweis = type of examination,
Dozent/Zeit/Ort = Lecturer/Time/Venue
Staatsexamen Höheres Lehramt an Gymnasien, studiertes Fach Mathematik
5. Studienjahr
• • • Katalog für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung • • •
|
| |
Modul MN-SEGY-MAT-MVERT: Mathematische Logik |
3+1+0 |
F01/131+ |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, optional im 10. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
2. Teil des Moduls Math Ba ALGSTR |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Webseite zur Vorlesung |
Dozent∗in/Zeit/Ort |
Fehm |
V |
Mi / Wed |
3. DS (11:10-12:40) |
WIL A120 |
|
|
|
|
Fehm |
V |
Fr / Fri |
3. DS (11:10-12:40) |
WIL A120 |
|
Übung integriert |
|
| |
Modul MN-SEGY-MAT-MVERT: Algebraische Strukturen |
3+1+0 |
F01/132+ |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, optional im 10. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
- Vorlesung ALGZTH Elemente der Algebra und Zahlentheorie, - linear algebra (ggf. Absprache mit dem Dozenten) |
Inhalt |
2. Teil des Moduls Math Ba ALGSTR |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent∗in/Zeit/Ort |
Schmidt |
V |
Di / Tue |
4. DS (13:00-14:30) |
WIL B122 |
|
|
02.04.19: Änderung für Zeit und Ort eingetragen |
|
Schmidt |
V |
Mo / Mon |
5. DS (14:50-16:20) |
WIL C133 |
|
Übung integriert |
|
| |
Modul MN-SEGY-MAT-MVERT: Partielle Differentialgleichungen |
3+1+0 |
F01/232* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, optional im 10. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-MINT; ggf. Absprache mit dem Dozenten |
Inhalt |
2. Semester des Moduls Math Ba HANA - Höhere Analysis |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY-MAT-MVERT: Höhere Analysis |
3+1+0 |
F01/231* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, optional im 10. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
2. Semester des Moduls Math Ba HANA - Höhere Analysis |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY-MAT-MVERT: Optimierung und Numerik |
3+1+0 |
F01/531* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, optional im 10. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-GDIM und Math-Ba-MINT; ggf. Absprache mit dem Dozenten |
Inhalt |
2.Teil des Moduls Math Ba OPTINUM |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY-MAT-MVERT: Modellierung und Simulation |
3+1+0 |
F01/631* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, optional im 10. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ; ggf. Absprache mit dem Dozenten |
Inhalt |
2. Teil des Moduls Math Ba MOSIM: Künstliche neuronale Netze, Deep Reinforcement Learning, Lattice-Boltzmann-Methode |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Webseite zur Vorlesung |
• • • Katalog für das Modul SEM - Mathematisches Seminar • • •
|
| |
Modul MN-SEGY/SEBS-MAT-SEM: Mathematisches Seminar: Optimierung über Graphen |
0+0+2 |
F01/549 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, Fach Mathematik (Zusatzangebot) |
Vorkenntnisse |
Modul MN-SEGY/SEBS-MAT-NUM |
Inhalt |
Minimale Spannbäume, Euler-Touren, Travelling-Salesman-Problem, Knotenfärbung, Kürzeste-Wege-Problem, Bestimmung maximaler Flüsse und kostenminimaler Flüsse |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs für die Einschreibung |
• • • Weitere Lehrveranstaltungen bzw.
Lehrangebot im Rahmen des Ergänzungsbereichs für Lehramts-Studiengänge mit staatlichem Abschluss - Angebotskatalog der Fakultät Mathematik für Studierende des Fachs Mathematik • • •
| |
Tutorium "Einsatz interaktiver Tafeln im Mathematikunterricht" (Blockveranstaltung) |
(fakultativ, 0+0+2) |
F01/759 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-2, EGS-SEGY-2, EGS-SEBS-2) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Handhabung der Technik (inkl. Feedback-Geräte), Einarbeitung in die Software ActivInspire, inkl. Erarbeitung typischer Einsatzszenarien im Unterricht, Einblicke in die Themenbereiche Mediendidaktik und Medienpädagogik |
Internet |
PDF mit allen Informationen zum Tutorium |
Dozent∗in/Zeit/Ort |
Baldauf |
T |
|
|
|
|
|
|
|
Blockseminar: 25.02. bis 01.03.2019 |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs