Archiv / Archive
Sommersemester 2019: Online-Lehrveranstaltungskatalog
Summer term 2019: Course Catalogue
Abkürzungen / abbreviations:
V, VO = Vorlesung / lecture, Ü = Übung / problem class, T = Tutorium / tutorial, S = Seminar / seminar
Categories: Zielgruppe = audience, Klassifizierung = classification, Inhalt = Curriculum, Einschreibung = inscription,
Leistungsnachweis = type of examination,
Dozent/Zeit/Ort = Lecturer/Time/Venue
Staatsexamen Höheres Lehramt an Berufsbildenden Schulen, studiertes Fach Mathematik
4. Studienjahr
| |
Modul MN-SEGY/SEBS-MAT-DGL: Gewöhnliche Differentialgleichungen |
2+2+0 |
F01/471 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, Fach Mathematik, 8. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen "Analysis" und "Lineare
Algebra und Analytische Geometrie" |
Inhalt |
- allgemeine Begriffe des mathematischen Gebietes
- explizite und numerische Lösungsmethoden
- mathematische Theorie der Existenz, Eindeutigkeit und des qualitativen Verhaltens von Lösungen
- Anwendungen, insbesondere Wachstumsmodelle und Schwingungsmodelle
- Vergleich mit diskreten Modellen
- Bearbeitung des entsprechenden Kapitels aus einem Schulbuch |
Einschreibung |
in den ersten Lehrveranstaltungen |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY/SEBS-MAT-SEM: Mathematisches Seminar: Optimierung über Graphen |
0+0+2 |
F01/549 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, Fach Mathematik (Zusatzangebot) |
Vorkenntnisse |
Modul MN-SEGY/SEBS-MAT-NUM |
Inhalt |
Minimale Spannbäume, Euler-Touren, Travelling-Salesman-Problem, Knotenfärbung, Kürzeste-Wege-Problem, Bestimmung maximaler Flüsse und kostenminimaler Flüsse |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs für die Einschreibung |
• • • Angebot für das Modul PROSEM Mathematisches Prosemiar BBS • • •
| |
Modul MN-SEBS-MAT-PROSEMB: Algebraische Methoden |
0+0+2 |
F01/136* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik |
Vorkenntnisse |
- |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs für die Einschreibung |
| |
Modul MN-SEBS-MAT-PROSEMB: Mathematisches Proseminar BBS - Analysis |
0+0+2 |
F01/236* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik |
Vorkenntnisse |
- |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs für die Einschreibung |
| |
Modul MN-SEBS-MAT-PROSEMB: Mathematisches Proseminar BBS - Geometrie |
0+0+2 |
F01/336* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik |
Vorkenntnisse |
- |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs für die Einschreibung |
Dozent∗in/Zeit/Ort |
Thom |
S |
Mo / Mon |
2. DS (09:20-10:50) |
WIL B122 |
|
|
|
| |
Modul MN-SEBS-MAT-PROSEMB - Mathematisches Proseminar BBS: Mengentheoretische Topologie |
0+0+2 |
F01/436* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik |
Vorkenntnisse |
Analysis |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs für die Einschreibung |
Dozent∗in/Zeit/Ort |
Ferger |
S |
Di / Tue |
6. DS (16:40-18:10) |
WIL C203 |
|
|
03.04.19: Änderung für den Raum eingetragen |
• • • Didaktik spezieller Gebiete • • •
| |
Modul MN-SEBS-MATH-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analysis |
0+0+2 |
F01/742* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik (6. Sem., optional im 8. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Die Analysis ist ein zentraler Bestandteil der Mathematik in der gymnasialen Oberstufe. Im Seminar werden ausgewählte Inhalte der Analysis vertieft und Unterrichtsvorschläge für Lehrplanthemen besprochen, wobei insbesondere auch die vielfältigen Anwendungen und die innermathematischen Vernetzungen der Analysis aufgezeigt werden. Der Einsatz von dynamischen Visualisierungen und CAS-Systemen wird an Hand von Beispielen beleuchtet und hinterfragt. |
Einschreibung |
Einschreibung über OPAL ab 11.03.-12.04.2019 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEBS-MATH-DIDHL (Referat 1 oder 2): Seminar Didaktik der Stochastik |
0+0+2 |
F01/744* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen (6. Sem., optional im 8. Sem.) |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
Behandlung ausgewählter Themenkreise der Stochastik im gymnasialen Mathematikunterricht (Wahrscheinlichkeitsbegriff; Bestimmung von Wahrscheinlichkeitsverteilungen; Simulation von Zufallsversuchen; Satz von Bayes; Zufallsgrößen und ihre Verteilungen; beschreibende und beurteilende Statistik) |
Einschreibung |
Einschreibung über OPAL ab 11.03.-12.04.2019 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEBS-MATH-DIDHL: Neue Medien im Mathematikunterricht |
0+0+2 |
F01/730* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik (6. Sem., optional im 8. Sem.); (auch im Ergänzungsbereich: EGS-SEGY-3; EGS-SEBS-3) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Der Einsatz elektronischer Medien, sogenannter 'Neuer Medien', im Mathematikunterricht ist Gegenstand der Lehrveranstaltung.
Exemplarisch werden mathematische und geometrische Software für das Simulieren, Modellieren und Visualisieren mathematischer Schulstoffe und Inhalte
vorgestellt sowie deren Einsatzmöglichkeiten im Mathematikunterricht diskutiert.
Der graphikfähige und programmierbare Taschenrechner sowie Tabellenkalkulationssoftware finden Beachtung.
Die Studenten bekommen einen Einblick in die didaktisch-methodische Nutzung der interaktiven Tafel. |
Einschreibung |
Einschreibung über OPAL ab 11.03.-12.04.2019 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY/SEBS-MATH-DIDHL: Blockpraktikum |
0+0+2 |
F01/733 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, Fach Mathematik (6. Sem., optional im 8. Sem.), Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik (8. Sem., optional im 6. Sem.) |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
4-wöchiges Blockpraktikum an der Schule |
Einschreibung |
Einschreibung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Hellwig, Morherr, Podemski, Woithe |
P |
|
|
|
|
|
01.03.2019: Terminkorrektur für Einführungsveranstaltung |
|
Einführungsveranstaltung am 03.07.2019, für genaue Informationen siehe Homepage Didaktik |
• • • Weitere Lehrveranstaltungen bzw.
Lehrangebot im Rahmen des Ergänzungsbereichs für Lehramts-Studiengänge mit staatlichem Abschluss - Angebotskatalog der Fakultät Mathematik für Studierende des Fachs Mathematik • • •
| |
Lernwerkstatt |
(fakultativ) |
F01/757 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-3, EGS-SEGY-3, EGS-SEBS-3) |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
Unterrichtsbeispiele für problemorientiertes und entdeckendes Lernen im Mathematikunterricht der Sek. I |
Einschreibung |
Einschreibung vorab per Mail an Petra.Woithe@tu-dresden.de |
Leistungsnachweis |
Präsentation mit Ausarbeitung |
Dozent∗in/Zeit/Ort |
Woithe |
|
Mo / Mon |
6. DS (16:40-18:10) |
WIL C203 |
ungerade Woche / odd week |
|
|
|
Beginn: 8. April 2019 |
| |
Tutorium "Einsatz interaktiver Tafeln im Mathematikunterricht" (Blockveranstaltung) |
(fakultativ, 0+0+2) |
F01/759 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-2, EGS-SEGY-2, EGS-SEBS-2) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Handhabung der Technik (inkl. Feedback-Geräte), Einarbeitung in die Software ActivInspire, inkl. Erarbeitung typischer Einsatzszenarien im Unterricht, Einblicke in die Themenbereiche Mediendidaktik und Medienpädagogik |
Internet |
PDF mit allen Informationen zum Tutorium |
Dozent∗in/Zeit/Ort |
Baldauf |
T |
|
|
|
|
|
|
|
Blockseminar: 25.02. bis 01.03.2019 |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs