Archiv / Archive
Sommersemester 2019: Online-Lehrveranstaltungskatalog
Summer term 2019: Course Catalogue
Abkürzungen / abbreviations:
V, VO = Vorlesung / lecture, Ü = Übung / problem class, T = Tutorium / tutorial, S = Seminar / seminar
Categories: Zielgruppe = audience, Klassifizierung = classification, Inhalt = Curriculum, Einschreibung = inscription,
Leistungsnachweis = type of examination,
Dozent/Zeit/Ort = Lecturer/Time/Venue
Gesamtübersicht: Institut für Wissenschaftliches Rechnen / List of all Courses: Institute of Scientific Computing
• • • 1. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba PROG: Programmieren für Mathematiker (Teil 2) |
3+2+0 |
F01/611 |
Zielgruppe |
Bachelor-Studiengang Mathematik (2. Sem.) |
Vorkenntnisse |
- |
Einschreibung |
in die Übungen über das OPAL-System |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEGY/SEBS-MAT-COMP: Computerorientiertes Rechnen |
2+2+0 |
F01/615 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, Fach Mathematik, 2. Sem. |
Vorkenntnisse |
laut Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul EW-SEGS-M-3: Computerorientiertes Rechnen für das Lehramt an Grundschulen |
2+2+0 |
F01/616 |
Zielgruppe |
Staatsexamen: Lehramt an Grundschulen, Fach Mathematik, 2. Sem. |
Leistungsnachweis |
laut Modulbeschreibung |
• • • 3. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba HANA - Höhere Analysis: Partielle Differentialgleichungen |
3+1+0 |
F01/232 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.), Studiengänge Physik im Nebenfach Mathematik, Staatsexamen: Höheres Lehramt an Gymnasien |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-MINT |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
| |
Modul Math Ba MOSIM: Modellierung und Simulation |
3+1+0 |
F01/631 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.), Studierende Physik, Informatik |
Vorkenntnisse |
Modul-Teil 1 |
Inhalt |
Künstliche neuronale Netze, Deep Reinforcement Learning, Lattice-Boltzmann-Methode |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
| |
Modul MN-SEMS-MAT-COMPM: Computerorientiertes Rechnen Mittelschule |
2+2+0 |
F01/615* |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 6. Sem. |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
• • • 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma SCCOMP: Große dünnbesetzte Gleichungssysteme / Large sparse linear systems |
3+1+0 |
F01/642 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik, Master CMS |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus den Gebieten Modellierung und Simulation auf Bachelor-Niveau und abhängig von der inhaltlichen Ausrichtung ggf. Grundkenntnisse zu partiellen Differentialgleichungen auf Bachelor-Niveau. |
Inhalt |
DE Beschreibung: Dieses Modul befasst sich mit der Lösung von Gleichungssystemen, die aus der Diskretisierung von partiellen Differentialgleichungen entstehen. In der Regel sind diese System sehr groß, mit vielen millionen Unbekannten, und dünn besetzt. Wir wollen uns mit direkten und iterativen Lösungsstrategien beschäftigen, die die Struktur des Problems, beispielsweise die Diskretisierung auf einem Gitter, ausnutzen. Mögliche Themen umfassen Krylov-Methoden, Gebietszerlegungsverfahren und Mehrgitter Ansätze. EN Abstract: In this class, we focus on the solution of linear systems arising from the discretization of partial differential equations. Those systems of equations are typically very large, i.e. millions of unknowns, and sparse. We want to discuss solution strategies involving the structure of the problem, e.g. that the equations arise from discretization on a computational grid. Possible topics include: Krylov-subspace methods, domain decomposition, and multigrid approaches. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
Sprache / Language |
English on request |
| |
Modul Math Ma SCPROG: Objektorientiertes Programmieren mit Java |
2+2+0 |
F01/643 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Inhalt |
Die grundlegenden Konzepte objektorientierter Programmiersprachen wie Klassen, Vererbung, Datenkapselung, Überladung, Polymorphie, Late Binding, generische Typen und Ausnahmen werden anhand von Beispielen in Java erklärt und im Computerpraktikum zur Lösung typischer Aufgaben eingesetzt.
Teile der umfangreichen Java-Klassenbibliothek, insbesondere Collections und Concurrency-Klassen, werden ebenfalls behandelt. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request |
| |
Modul Math Ma WIA |
2+2+0 |
F01/640 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs für die Einschreibung |
Sprache / Language |
English on request |
Dozent∗in/Zeit/Ort |
|
V/S |
|
|
|
|
|
10.04.2019 eingetragen |
|
Die Lehrveranstaltung findet nicht statt. |
| |
Modul Math Ma MODSEM: Modellierungsseminar / CMS-CMA-MODSEM Modeling Case Studies |
0+4+0 |
F01/644 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik, Master CMS |
Klassifizierung |
Master TMath: Pflichtmodul |
Vorkenntnisse |
Es werden Kompetenzen aus den Modulen Math-Ma-PDEANA, Math-Ma-FEM, Math-Ma-PDENM vorausgesetzt. |
Einschreibung |
Master Technomathematik: siehe OPAL-Kurs, Master CMS: in SELMA |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs für die Einschreibung (Technomathematik) |
Sprache / Language |
English |
| |
Modul CMS-SEM: Literature Studies in Computational Modeling |
0+0+2 |
F01/647 |
Zielgruppe |
Master-Studiengang CMS - Computational Modeling and Simulation |
Klassifizierung |
Master TMath: Pflichtmodul |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English |
| |
Modul MN-SEGY-MAT-MVERT: Partielle Differentialgleichungen |
3+1+0 |
F01/232* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, optional im 10. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-MINT; ggf. Absprache mit dem Dozenten |
Inhalt |
2. Semester des Moduls Math Ba HANA - Höhere Analysis |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY-MAT-MVERT: Modellierung und Simulation |
3+1+0 |
F01/631* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, optional im 10. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ; ggf. Absprache mit dem Dozenten |
Inhalt |
2. Teil des Moduls Math Ba MOSIM: Künstliche neuronale Netze, Deep Reinforcement Learning, Lattice-Boltzmann-Methode |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Webseite zur Vorlesung |
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Forschungsseminar des Institutes für Wissenschaftliches Rechnen |
0+2+0 |
F01/655 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Inhalt |
Vorträge eingeladener Wissenschaftler zu ausgewählten Themen aus Gebieten des Wissenschaftlichen Rechnens. |
Internet |
Aktuelle Vorträge |
• • • Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (ET) |
2+2+0 |
F01/488 |
Zielgruppe |
Modul ET-01 04 03 Elektrotechnik (4. Sem.) // Modul ET-01 04 03 Informationssystemtechnik // Modul MT-01 04 03 Mechatronik //Modul RES-G05 Regenerative Energiesysteme |
Vorkenntnisse |
Module ET-01 04 01, 02 und 03 (Teil 1) bzw. MT-01 04 01, 02 und 03 (Teil 1) bzw. Module RES-G01 und G02 |
Inhalt |
Wahrscheinlichkeitsrechnung, partielle Differentialgleichungen |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Franz |
V |
Fr / Fri |
3. DS (11:10-12:40) |
BAR/SCHÖ/E |
|
|
|
|
Feldmann |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs