Archiv / Archive
Wintersemester 2018/2019: Online-Lehrveranstaltungskatalog
Winter term 2018/2019: Course Catalogue
Abkürzungen / abbreviations:
V, VO = Vorlesung / lecture, Ü = Übung / problem class, T = Tutorium / tutorial, S = Seminar / seminar
Categories: Zielgruppe = audience, Klassifizierung = classification, Inhalt = Curriculum, Einschreibung = inscription,
Leistungsnachweis = type of examination,
Dozent/Zeit/Ort = Lecturer/Time/Venue
Gesamtübersicht für die Fakultät Mathematik / List of all Courses
sortiert nach Instituten und Studienjahren, fakultativen und Export-Lehrveranstaltungen
sorted by institutes and years
• • • Institut für Algebra - 1. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul MN-SEGY/SEBS-MAT-LAAG: Lineare Algebra und Analytische Geometrie (Teil 1) |
4+2+0 |
F01/111* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 1. Sem. |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Algebra - 2. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba GEO: Geometrie |
3+1+0 |
F01/321 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.), Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Lineare Algebra und Analytische Geometrie I und II |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
OPAL |
OPAL-Kurs mit Einschreibung für die Übung |
Dozent∗in/Zeit/Ort |
Fehm |
V |
Mi / Wed |
2. DS (09:20-10:50) |
WIL A124 |
ungerade Woche / odd week |
|
09.10.2018: Raumänderung eingetragen! |
|
Fehm |
V |
Fr / Fri |
3. DS (11:10-12:40) |
WIL B321 |
|
|
|
|
N.N. |
Ü |
Mi / Wed |
2. DS (09:20-10:50) |
WIL C307 |
gerade Woche / even week |
|
|
|
N.N. |
Ü |
Mi / Wed |
4. DS (13:00-14:30) |
WIL C203 |
gerade Woche / even week |
|
|
|
N.N. |
Ü |
Di / Tue |
2. DS (09:20-10:50) |
WIL C102 |
gerade Woche / even week |
|
18.09.2018: Änderung für Zeit und Raum eingetragen |
|
Kursassistent: Francois Legrand |
• • • Institut für Algebra - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba ALGSTR Algebraische Strukturen: Diskrete Strukturen |
4+0+0 |
F01/131 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Inhalt |
- Grundlagen zu Graphen, z.B. zu Matchings (Paarungen) und Färbbarkeit.
-
Enumerative Kombinatorik und erzeugende Funktionen, analytische Kombinatorik.
-
Algebraische Graphentheorie
- Die probabilistische Methode (z.B., für die Existenz von Graphen mit hoher chromatischer Zahl und hoher Taillenweite), Zufallsgraphen
|
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
Sprache / Language |
English on demand |
| |
Modul Math Ba ALGSTR Algebraische Strukturen: Methoden der angewandten Algebra |
4+0+0 |
F01/132 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba SEM - Seminar (Angebot des Institutes für Algebra ) |
0+2+0 |
F01/135 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
Dozent∗in/Zeit/Ort |
Verhulst |
S |
Fr / Fri |
5. DS (14:50-16:20) |
WIL A221 |
|
|
13.08.2018: Das Seminar wird von Dr. Verhulst angeboten. |
• • • Institut für Algebra - 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma ORDSTR: Ordnungsstrukturen |
3+1+0 |
F01/144 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma ANGALG: Angewandte Algebra |
3+1+0 |
F01/142 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen',
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen',
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
| |
Modul Math Ma MMRM: Geordnete Mengen |
2+0+0 |
F01/148 |
Zielgruppe |
Master-Studiengang Mathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich Zuordnung zum Studienschwerpunkt Algebra, Geometrie und diskrete Strukturen |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Geordnete Strukturen sind durch Mengen mit einer Ordnungsrelation
charakterisiert und kommen in vielen Bereichen der Mathematik und ihren
Anwendungen vor. Die Vorlesung behandelt die grundlegenden Begriffsbildungen, Sätze und Methoden für Ordnungsstrukturen, u.a. wohlfundierte Ordungen, Wohlordnungssatz, ordnungstheoretische (transfininite) Induktion, Darstellung
geordneter Mengen, Produkte und Summen, Verbände, Begriffsverbände,
Hüllenoperatoren und Hüllensysteme, Galoisverbindungen, vollständige Ordnungen, stetige Funktionen, Fixpunktsätze. |
Leistungsnachweis |
in Absprache mit dem Dozenten |
| |
Modul MN-SEGY-MAT-MVERT: Diskrete Strukturen |
4+0+0 |
F01/131* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen: - Grundlagen zu Graphen, z.B. zu Matchings (Paarungen) und Färbbarkeit.
-
Enumerative Kombinatorik und erzeugende Funktionen, analytische Kombinatorik.
-
Algebraische Graphentheorie
- Die probabilistische Methode (z.B., für die Existenz von Graphen mit hoher chromatischer Zahl und hoher Taillenweite), Zufallsgraphen
|
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Webseite zur Vorlesung |
Sprache / Language |
English on demand |
| |
Modul MN-SEGY-MAT-MVERT: Methoden der angewandten Algebra |
4+0+0 |
F01/132* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ba-ALGZTH; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY-MAT-MVERT: Ordnungsstrukturen |
3+1+0 |
F01/144* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ba-ALGZTH; ggf. Absprache mit dem Dozenten |
Inhalt |
Modul Math Ma ORDSTR: Ordnungsstrukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY/SEBS-MAT-SEM: Mathematisches Seminar - Algebra |
0+0+2 |
F01/771 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 9. Sem. |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
• • • Institut für Algebra - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Seminar Algebra, Geometrie und Kombinatorik |
0+2+0 |
F01/155 |
Zielgruppe |
Master-Studiengang Mathematik |
Inhalt |
Vorträge zu aktuellen Forschungsthemen der Institute für Algebra und für Geometrie sowie eingeladener Gäste. Alle Interessenten sind herzlich eingeladen. Die Themen werden im Aushang und im Internet bekannt gegeben. |
Einschreibung |
- |
Leistungsnachweis |
nach Vereinbarung |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
| |
Algebra: International Seminar |
0+2+0 |
F01/156 |
Zielgruppe |
Mathematische Masterstudiengänge, Studierende Computational Logic, Doktoranden, Gäste |
Inhalt |
Im Seminar kommen bevorzugt aktuelle Forschungsergebnisse zur Diskussion, insbesondere solche, die von Mitgliedern und Gästen des Instituts für Algebra erarbeitet werden. Weil meist ausländische Wissenschaftler teilnehmen, ist die Arbeitssprache Englisch. |
Einschreibung |
- |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
| |
Seminar: Musik, Mathematik, Kognition |
0+2+0 |
F01/157 |
Zielgruppe |
Mathematische Masterstudiengänge, Studierende an den Fachbereichen Musikwissenschaft, Informatik und Psychologie und alle Interessenten |
Inhalt |
Das Seminar ist ein kritischer Streifzug durch die interdisziplinären Verbindungen von Musik, Mathematik, Psychologie, Informatik, Linguistik und verwandten Disziplinen. Den Schwerpunkt stellt das Spannungsverhältnis von Musik als Hörerfahrung und Musik als formaler Struktur dar. Das Seminar widmet sich der Diskussion aktueller Studien im Bereich der Musikkognition sowie gegenwärtigen formalen und mathematischen Ansätze in Musiktheorie unter dem Aspekt der Entwicklung einer extensionalen Standardsprache. Ziel des Seminars ist die kritische Reflexion des aktuellen Forschungsstands und die Diskussion neuer wissenschaftlicher Initiativen. Besonderes Augenmerk liegt in diesem Semester im Vergleich arabischer Tonskalen mit indischen Tonskalen. Ggf. besteht für Studierende anderer Fachrichtungen und Fakultäten die Möglichkeit, sich die Seminarteilnahme z.B. im Bereich Aqua anerkennen zu lassen. Bitte erkundigen Sie sich in Ihrem Prüfungsamt. |
Internet |
Informationen zu den Veranstaltungen |
• • • Institut für Algebra - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul INF B110: Einführung in die Mathematik für Informatiker: Diskrete Strukturen und Lineare Algebra |
6+4+0 |
F01/184 |
Zielgruppe |
Bachelor-Studiengänge Informatik und Medieninformatik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Diskrete Strukturen: Es werden der Umgang mit mathematischer Methodik, grundlegende mathematische Begriffe, Schreibweisen, Argumentationsformen und Fertigkeiten am Beispiel der Mengen- und Formelsprache und an Elementen der Diskreten Mathematik behandelt. Im Einzelnen: Graphen, Relationen, Abbildungen und Morphismen, Ordnungen und Verbände, Symmetrien, modulare Arithmetik. Lineare Algebra und Geometrie: Es werden der systematische Theorieaufbau, der darauf gründende abstrakte Strukturbegriff und seine Anwendungen betont. Im Einzelnen: Vektorraum, Basis, Dimensionen, lineare Gleichungssysteme, Bestapproximation, eometrische Interpretationen, Eigenwerte sowie der Umgang mit komplexen Zahlen. |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Baumann |
V |
Mo / Mon |
3. DS (11:10-12:40) |
TRE MATH |
Lineare Algebra |
|
|
|
Schneider |
V |
Mi / Wed |
3. DS (11:10-12:40) |
HSZ/02/E |
Diskrete Strukturen |
|
|
|
Schneider |
V |
Fr / Fri |
3. DS (11:10-12:40) |
TRE MATH |
Diskrete Strukturen |
|
|
|
Noack |
Ü |
|
|
|
Lineare Algebra |
Kursassistenz |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs bei der Kursassistentin. |
|
Mühle |
Ü |
|
|
|
Diskrete Strukturen |
Kursassistenz |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs beim Kursassistenten. |
| |
Modul ET-01 04 04: Algebra (Teil 1, Informationssystemtechnik) |
1+1+0 |
F01/181 |
Zielgruppe |
Studierende Informationssystemtechnik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Ausgewählte Kapitel der Angewandten Algebra, Methoden der algebraischen Modellierung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Baumann |
V |
Mi / Wed |
2. DS (09:20-10:50) |
WIL C307 |
ungerade Woche / odd week |
|
|
|
Lehtonen |
Ü |
Fr / Fri |
3. DS (11:10-12:40) |
WIL C104 |
gerade Woche / even week |
|
|
|
Lehtonen |
Ü |
Fr / Fri |
3. DS (11:10-12:40) |
WIL C104 |
ungerade Woche / odd week |
|
|
| |
Modul PhY-Ba-Ma-LA: Lineare Algebra |
4+2+0 |
F01/390 |
Zielgruppe |
Bachelor-Studiengang Physik (1. Sem.) |
Vorkenntnisse |
Abitur |
Inhalt |
Vektorräume, lineare Unabhängigkeit, lineare Abbildungen, Matrizen und Determinanten, Eigenwerte und Normalformentheorie, Skalarprodukte und selbstadjungierte Endomorphismen, analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zu Vorlesung und Übungen |
| |
Modul INF B120: Mathematische Methoden für Informatiker (Teil 2) |
3+2+0 |
F01/187 |
Zielgruppe |
Bachelor-Studiengänge Informatik und Medieninformatik (3. Sem.) |
Vorkenntnisse |
Einführung in die Mathematik für Informatiker, Modul INF B120: Mathematische Methoden für Informatiker (Teil 1) |
Inhalt |
Algebra, Analysis, Numerische Mathematik, Wahrscheinlichkeitsrechnung |
Einschreibung |
- |
Leistungsnachweis |
Prüfung |
Dozent∗in/Zeit/Ort |
Baumann |
V |
Di / Tue |
3. DS (11:10-12:40) |
HSZ/02/E |
ungerade Woche / odd week |
|
|
|
Baumann |
V |
Do / Thu |
3. DS (11:10-12:40) |
HSZ/02/E |
|
|
|
|
Noack |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs bei der Kursassistentin. |
| |
Modul INF-D9-20: Methoden der angewandten Algebra (= Math Ba ALGSTR) |
4+0+0 |
F01/132+ |
Zielgruppe |
für Diplom-Studiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul INF-D9-20: Diskrete Strukturen (= Math Ba ALGSTR) |
4+0+0 |
F01/131+ |
Zielgruppe |
für Diplom-Studiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen: - Grundlagen zu Graphen, z.B. zu Matchings (Paarungen) und Färbbarkeit.
-
Enumerative Kombinatorik und erzeugende Funktionen, analytische Kombinatorik.
-
Algebraische Graphentheorie
- Die probabilistische Methode (z.B., für die Existenz von Graphen mit hoher chromatischer Zahl und hoher Taillenweite), Zufallsgraphen
|
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
Sprache / Language |
English on demand |
| |
Modul INF-SEGY/BS/MS-INF-03: Mathematik für das Lehramt Informatik |
4+2+0 |
F01/216+ |
Zielgruppe |
Staatsexamen: Lehramt Informatik (GY, BS, MS); gemeinsam mit Lehramt Mittelschule und Grundschule, Fach Mathematik, 1. Sem. |
Inhalt |
Logik und Mengenlehre, algebraische Strukturen; lineare Gleichungssysteme; endlichdimensionale Vektorräume; Matrizen; Determinanten; euklidische Vektorräume |
Einschreibung |
im OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
• • • Institut für Analysis - 1. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba ANAG: Grundlagen der Analysis (Teil 1) |
4+2+0 |
F01/211 |
Zielgruppe |
Bachelor-Studiengang Mathematik (1. Sem.); gemeinsam mit BA-Physik, Lehramt GY und BBS - Staatsexamen, 3. Sem. |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEMS-MAT-GLAAG: Grundlagen der Linearen Algebra und Analytischen Geometrie (Teil 1) |
4+2+0 |
F01/216 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 1. Sem. (gemeinsam mit Lehramt an Grundschulen; gemeinsam mit SE-Lehramt GY, BS, MS, studiertes Fach Informatik) |
Inhalt |
Logik und Mengenlehre, algebraische Strukturen; lineare Gleichungssysteme; endlichdimensionale Vektorräume; Matrizen; Determinanten; euklidische Vektorräume |
Einschreibung |
im OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY/SEBS-MAT-GEOVIS: Geometrie und computergestütztes Visualisieren |
2+1+0 |
F01/215 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 1. Sem. (gemeinsam mit Lehramt an Grundschulen und an Mittelschulen) |
Vorkenntnisse |
- |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEMS-MAT-ELGEOM: Elementargeometrie |
2+2+0 |
F01/215* |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 1. Sem. (gemeinsam mit Lehramt an Grundschulen und SE-Lehramt GY, BS) |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul EW-SEGS-M-1: Lineare Algebra und Analytische Geometrie für das Lehramt an Grundschulen |
4+2+0 |
F01/216* |
Zielgruppe |
Staatsexamen: Lehramt an Grundschulen, Fach Mathematik, 1. Sem. (gemeinsam mit Lehramt an Mittelschulen; gemeinsam mit SE-Lehramt GY, BS, MS, studiertes Fach Informatik) |
Inhalt |
Logik und Mengenlehre, algebraische Strukturen; lineare Gleichungssysteme; endlichdimensionale Vektorräume; Matrizen; Determinanten; euklidische Vektorräume |
Einschreibung |
im OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul EW-SEGS-M-2: Geometrie für das Lehramt an Grundschulen |
2+2+0 |
F01/215+ |
Zielgruppe |
Staatsexamen: Lehramt an Grundschulen, Fach Mathematik, 1. Sem. (gemeinsam mit Lehramt an Mittelschulen und SE-Lehramt GY, BS) |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Analysis - 2. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul MN-SEGY/SEBS-MAT-ANA: Analysis (Teil 1) |
4+2+0 |
F01/211* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 3. Sem. |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEMS-MAT-EANA: Einführung in die Analysis (Teil 1) |
3+2+0 |
F01/228 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 3. Sem. (gemeinsam mit Lehramt an Grundschulen) |
Vorkenntnisse |
Empfohlen sind Kenntnisse von Grundlagen der linearen Algebra und analytischen Geometrie |
Inhalt |
Folgende Themen werden in dieser Grundlagenvorlesung Analysis behandelt: der Körper der reellen Zahlen, Folgen und Reihen in den reellen Zahlen, Funktionen von einer reellen Veränderlichen (Stetigkeit, Differenzierbarkeit, Integral]. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul EW-SEGS-M-4: Analysis für das Lehramt an Grundschulen |
3+2+0 |
F01/228* |
Zielgruppe |
Staatsexamen: Lehramt an Grundschulen, Fach Mathematik, 3. Sem. (gemeinsam mit Lehramt an Mittelschulen) |
Vorkenntnisse |
Empfohlen sind Kenntnisse von Grundlagen der linearen Algebra und analytischen Geometrie |
Inhalt |
Folgende Themen werden in dieser Grundlagenvorlesung Analysis behandelt: der Körper der reellen Zahlen, Folgen und Reihen in den reellen Zahlen, Funktionen von einer reellen Veränderlichen (Stetigkeit, Differenzierbarkeit, Integral]. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
• • • Institut für Analysis - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba SEM: Seminar Analysis |
0+2+0 |
F01/235 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Module Math-Ba-GDIM, ANAG |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
| |
Modul MN-SEMS-MAT-ELZTH: Elementare Zahlentheorie |
2+2+0 |
F01/237 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 5. Sem. (gemeinsam mit Lehramt an Grundschulen) |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul EW-SEGS-M-7: Elementare Zahlentheorie für das Lehramt an Grundschulen |
2+2+0 |
F01/237* |
Zielgruppe |
Staatsexamen: Lehramt an Grundschulen, Fach Mathematik, 5. Sem. (gemeinsam mit Lehramt an Mittelschulen) |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Analysis - 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma MFANA: Methoden der Funktionalanalysis |
3+1+0 |
F01/245 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik' Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik' Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'. |
Inhalt |
In diesem Wintersemester behandeln wir in dieser fortgeschrittenen Funktionalanalysis die Theorie der nichtlinearen Halbgruppen auf Banachräumen. Kenntnisse über die Theorie der linearen C_0-Halbgruppen (Sommersemester 2018) sind von Vorteil, aber keine Voraussetzung. Viele lineare und nichtlineare, partielle Differentialgleichungen, in denen die unbekannte Funktion (auch) von der Zeit abhängt, wie etwa Transportgleichungen, Diffusionsgleichungen (Zusammenhang zu stochastischen Prozessen), Wellengleichungen, Schrödingergleichungen, lassen sich abstrakt als gewöhnliche Differentialgleichungen der Form u'+Au
i 0 auf einem Banachraum umschreiben. Der Operator A ist hier im allgemeinen nur noch eine Relation. Wir untersuchen Wohlgestelltheit des Cauchyproblems und Eigenschaften der erzeugten Halbgruppe wie etwa Regularität, Maximumprinzipien, asymptotisches Verhalten und Approximation, und diskutieren natürlich auch Anwendungsbeispiele. |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma WIA: Wissenschaftliches Arbeiten (22. Internetseminar - Ergodic theory) |
0+2+0 |
F01/240 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik u.a. Interessenten |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Zuordnung zum Studienschwerpunkt Analysis und Stochastik Master WMath: Pflichtmodul. |
Inhalt |
Im WS 2018 /19 und im SS 2019 findet wieder das internationale Internetseminar über Evolutionsgleichungen statt. Alle Informationen dazu auf der Webseite bei Professor Chill. |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zum Internetseminar |
OPAL |
OPAL-Kurs zur Einschreibung |
| |
Modul MN-SEGY/SEBS-MAT-SEM: Mathematisches Seminar - Analysis |
0+0+2 |
F01/772 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 9. Sem. |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
| |
Modul MN-SEMS MAT SEMMS: Mathematisches Seminar Mittelschule - Analysis |
0+0+2 |
F01/273 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 7. Sem. |
Vorkenntnisse |
Kompetenzen aus dem Modul MN-SEMS-MAT-EANA |
Inhalt |
Behandlung schulrelevanter Themen vom Standpunkt der höheren Mathematik |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
Dozent∗in/Zeit/Ort |
Trostorff |
S |
Mo / Mon |
4. DS (13:00-14:30) |
WIL C206 |
|
|
26.09.2018: Dr. Trostorff als Seminarleiter eingetragen |
| |
Modul MN-SEMS MAT SEMMS: Mathematisches Seminar Mittelschule - Analysis |
0+0+2 |
F01/272 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 7. Sem. |
Vorkenntnisse |
Kompetenzen aus dem Modul MN-SEMS-MAT-EANA |
Inhalt |
Behandlung schulrelevanter Themen vom Standpunkt der höheren Mathematik |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
• • • Institut für Analysis -Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Oberseminar Analysis |
0+2+0 |
F01/255 |
Zielgruppe |
Mathematische Masterstudiengänge, Studierende Physik |
Vorkenntnisse |
Solide Kenntnisse in Funktionalanalysis und auf dem Gebiet der Partiellen Differentialgleichungen |
Inhalt |
Lose Folge von Vorträgen zu ausgewählten Themen der Analysis. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
| |
Seminar: Themen der Mathematischen Physik |
0+2+0 |
F01/257 |
Zielgruppe |
Bachelor-Studiengang Physik mit Nebenfach Mathematik, Bachelor-Studiengang Mathematik (ab 4. Fachsem.), Math. Masterstudiengänge |
Inhalt |
Mathematische Konzepte der Quantenmechanik |
Einschreibung |
siehe eigene Internetseite des Seminars |
Dozent∗in/Zeit/Ort |
Kalauch |
S |
Do / Thu |
2. DS (09:20-10:50) |
WIL C204 |
|
|
17.10.2018: Änderung für Zeit und Raum eingetragen. |
• • • Institut für Analysis - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul PHY-Ba-Ma-Ana-Grund: Grundlagen der Analysis |
4+2+0 |
F01/211+ |
Zielgruppe |
Bachelor-Studiengang Physik (1. Sem.); gemeinsam mit BA-Mathematik, Lehramt GY und BBS - Staatsexamen, 1. Sem. |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Mathematik I - BIW1-05: Lineare Algebra und Analysis (Bauingenieurwesen) |
4+2+0 |
F01/281-1 |
Zielgruppe |
Bachelor-Studiengang Bauingenieurwesen (gemeinsam mit Geo- und Hydrowissenschaften) |
Vorkenntnisse |
- |
Inhalt |
Mengenlehre, Komplexe Zahlen, Lineare Algebra, Analytische Geometrie, Funktionen einer Variablen, Grundlagen der Differential- und Integralrechnung |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs mit Einschreibung |
| |
Mathematik I - BSc GG 02: Mathematik - Lineare Algebra und Analysis (Geodäsie und Geoinformation) |
4+2+0 |
F01/281-2 |
Zielgruppe |
Bachelor-Studiengang Geodäsie und Geoinformation (gemeinsam mit Bauingenieurwesen und Hydrowissenschaften) |
Vorkenntnisse |
- |
Inhalt |
Mengenlehre, Komplexe Zahlen, Lineare Algebra, Analytische Geometrie, Funktionen einer Variablen, Grundlagen der Differential- und Integralrechnung |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs mit Einschreibung |
| |
Mathematik I - BHYWI01: Mathematik (Hydrowissenschaften), BWW01: Mathematik (Abfallwirtschaft und Altlasten, Hydrologie, Wasserwirtschaft) |
4+2+0 |
F01/281-3 |
Zielgruppe |
Bachelor-Studiengänge Wasserwirtschaft, Hydrologie, Abfallwirtschaft und Altlasten (gemeinsam mit Bauingenieurwesen und Geowissenschaften) |
Vorkenntnisse |
- |
Inhalt |
Mengenlehre, Komplexe Zahlen, Lineare Algebra, Analytische Geometrie, Funktionen einer Variablen, Grundlagen der Differential- und Integralrechnung |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs mit Einschreibung |
| |
Mathematik III - BIW1-06: Lineare Differentialgleichungen und Stochastik (Bauingenieurwesen) |
2+2+0 |
F01/283-1 |
Zielgruppe |
Studierende Bauingenieurwesen (gemeinsam mit Geowissenschaften) |
Vorkenntnisse |
Mathematik I und II |
Inhalt |
Gewöhnliche Differentialgleichungen, Wahrscheinlichkeitsrechnung (Ereignisse, Wahrscheinlichkeitsbegriffe, Verteilungen), Mathematische Statistik (Kenngrößen der beschreibenden Statistik, Parameterschätzung, Testverfahren) |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs |
Dozent∗in/Zeit/Ort |
Chill |
VO |
Do / Thu |
1. DS (07:30-09:00) |
TRE MATH |
|
|
|
|
Scheffler |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe OPAL-Kurs. |
| |
Mathematik III - BSc GG 03: Mathematik – Differentialgleichungen und Stochastik (Geodäsie und Geoinformation) |
2+2+0 |
F01/283-2 |
Zielgruppe |
Studierende Geodäsie und Geoinformation (gemeinsam mit Bauingenieurwesen) |
Vorkenntnisse |
Mathematik I und II |
Inhalt |
Gewöhnliche Differentialgleichungen, Wahrscheinlichkeitsrechnung (Ereignisse, Wahrscheinlichkeitsbegriffe, Verteilungen), Mathematische Statistik (Kenngrößen der beschreibenden Statistik, Parameterschätzung, Testverfahren) |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs |
Dozent∗in/Zeit/Ort |
Chill |
VO |
Do / Thu |
1. DS (07:30-09:00) |
TRE MATH |
|
|
|
|
Scheffler |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe OPAL-Kurs. |
| |
Mathematik III - BHYWI11: Lineare Differentialgleichungen und Stochastik (Hydrowissenschaften) |
2+2+0 |
F01/283-3 |
Zielgruppe |
Bachelor-Studiengang Hydrowissenschaften (gemeinsam mit Bauingenieurwesen und Geowissenschaften) |
Vorkenntnisse |
Mathematik I und II |
Inhalt |
Gewöhnliche Differentialgleichungen, Wahrscheinlichkeitsrechnung (Ereignisse, Wahrscheinlichkeitsbegriffe, Verteilungen), Mathematische Statistik (Kenngrößen der beschreibenden Statistik, Parameterschätzung, Testverfahren) |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs |
Dozent∗in/Zeit/Ort |
Chill |
VO |
Do / Thu |
1. DS (07:30-09:00) |
TRE MATH |
|
|
|
|
Scheffler |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe OPAL-Kurs. |
| |
Modul BIW3-12: Fortgeschrittene mathematische Methoden für Ingenieure |
2+1+0 |
F01/284 |
Zielgruppe |
Studierende des Ingenieurwesens, insbesondere des Bauingenieurwesens und Elektroingenieurwesens |
Vorkenntnisse |
Fundierte mathematische Kenntnisse aus den Modulen des Grund- und Grundfachstudiums |
Inhalt |
Inhalt dieses zwei-semestrigen Moduls sind die wichtigsten mathematischen Grundlagen für die Beschreibung von Fragen verschiedener ingenieurwissenschaftlicher Gebiete wie zum Beispiel Kontinuumsmechanik, Strömungsmechanik, Elektrodynamik usw. Einen weiteren Schwerpunkt bilden die Schlüsselideen der Tensoranalysis, Operatortheorie, Approximationstheorie und der Variationsrechnung. |
Einschreibung |
- |
Leistungsnachweis |
lt. Prüfungsordnung |
Dozent∗in/Zeit/Ort |
Fasangová |
VW |
Do / Thu |
2. DS (09:20-10:50) |
WIL A124 |
|
|
|
|
Fasangová |
ÜW |
Di / Tue |
3. DS (11:10-12:40) |
WIL B122 |
gerade Woche / even week |
|
10.10.2018: Raumänderung eingetragen! |
• • • Institut für Geometrie - 1. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba LAAG: Lineare Algebra und Analytische Geometrie (Teil 1) |
4+2+0 |
F01/111 |
Zielgruppe |
Bachelor-Studiengang Mathematik (1. Sem.); gemeinsam mit Lehramt GY und BBS - Staatsexamen, 1. Sem. |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Geometrie - 2. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba GDIM: Gewöhnliche Differentialgleichungen und Integration auf Mannigfaltigkeiten |
3+1+0 |
F01/221 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.) |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ba-ANAG |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
Dozent∗in/Zeit/Ort |
Schuricht |
V |
Di / Tue |
6. DS (16:40-18:10) |
WIL A317 |
|
|
|
|
Schuricht |
V |
Do / Thu |
5. DS (14:50-16:20) |
WIL B321 |
ungerade Woche / odd week |
|
|
|
N.N. |
Ü |
Do / Thu |
4. DS (13:00-14:30) |
WIL C102 |
gerade Woche / even week |
|
|
|
N.N. |
Ü |
Do / Thu |
4. DS (13:00-14:30) |
WIL C102 |
ungerade Woche / odd week |
|
|
|
N.N. |
Ü |
Do / Thu |
5. DS (14:50-16:20) |
WIL C307 |
gerade Woche / even week |
|
|
| |
Modul MN-SEGY/SEBS-MAT-GEOVIS (Projekt): Geometrie und computergestütztes Visualisieren |
Projektarbeit |
F01/328 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 3. Sem. |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Geometrie - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba DGEO: Differentialgeometrie |
3+1+0 |
F01/331 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-GEO, Math-Ba-LAAG und Math-Ba-PROG |
Inhalt |
Differentialgeometrie ist eines der zentralen Gebiete der Mathematik, welche durch die Methoden der Analysis und Algebra geometrische Objekte namens Mannigfaltigkeiten analysiert. Diese kann man sich als 'mehrdimensionale Flächen' vorstellen. Beispiele dafür sind Sphären, Tori, Möbiusband, Kleinsche Flasche etc. In dieser Vorlesung werden wir die Grundlagen der Theorie der Mannigfaltigkeiten (zunächst an Beispielen von Kurven und Flächen) kennenlernen und erste wichtige Resultate beweisen. |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba SEM - Seminar (Angebot des Institutes für Geometrie) |
0+2+0 |
F01/335 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Lineare Algebra, Geometrie, Analysis |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
Dozent∗in/Zeit/Ort |
Thom |
S |
Do / Thu |
2. DS (09:20-10:50) |
WIL A120 |
|
|
|
• • • Institut für Geometrie - 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma AMGEO: Algebraische Methoden in der Geometrie |
3+1+0 |
F01/342 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
laut Modulbeschreibung |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma PDEANA: Partielle Differentialgleichungen – Analytische Grundlagen |
3+1+0 |
F01/247 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Pflichtmodul. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Analysis-Veranstaltungen des Bachelor-Studiengangs |
Inhalt |
Hinweis: Das Modul schafft Voraussetzungen für das Modul Math-Ma-MODSEM. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request |
| |
Modul Math Ma WIA: Wissenschaftliches Arbeiten |
2+2+0 |
F01/340 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Zuordnung zum Studienschwerpunkt Analysis und Stochastik Master WMath: Pflichtmodul. |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
Sprache / Language |
English |
| |
Modul Math Ma MMRM: Groups and operator algebras |
3+1+0 |
F01/350 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik u.a. Interessenten |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich Zuordnung zu den Studienschwerpunkten 'Algebra, Geometrie und diskrete Strukturen' sowie 'Analysis und Stochastik' |
Inhalt |
This course is devoted to the study of discrete groups by methods of functional analysis (using operator algebras, i.e., algebras of bounded operators on a Hilbert space); this idea turned out to be incredibly fruitful for both areas (understanding groups via operator algebras and vice versa). For instance, as we will learn in the course, the additive group of integers (Z,+) turns out to be 'responsible' for the classical Fourier theory of periodic functions which essentially reduces to the classical spectral theorem in functional analysis by this technique. In this course we will learn both some basic results on relationship of groups and operator algebras and have a glimpse on some open problems which are subject of actual research. |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English |
| |
Modul MN-SEGY-MAT-MVERT: Differentialgeometrie |
3+1+0 |
F01/331* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-GEO, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba DGEO - Differentialgeometrie: Differentialgeometrie ist eines der zentralen Gebiete der Mathematik, welche durch die Methoden der Analysis und Algebra geometrische Objekte namens Mannigfaltigkeiten analysiert. Diese kann man sich als 'mehrdimensionale Flächen' vorstellen. Beispiele dafür sind Sphären, Tori, Möbiusband, Kleinsche Flasche etc. In dieser Vorlesung werden wir die Grundlagen der Theorie der Mannigfaltigkeiten (zunächst an Beispielen von Kurven und Flächen) kennenlernen und erste wichtige Resultate beweisen. |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY/SEBS-MAT-SEM: Mathematisches Seminar - Geometrie |
0+0+2 |
F01/773 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 9. Sem. |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
• • • Institut für Geometrie - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Institutsseminar Geometrie / Graduate Lectures in Mathematics |
0+2+0 |
F01/355 |
Zielgruppe |
Mathematische Masterstudiengänge u.a. Interessenten |
Inhalt |
Institutsseminar Geometrie: Vorträge zur Geometrie und ihren Anwendungen Graduate Lectures in Mathematics: This series of lectures aims at Master's and PhD students in mathematics and offers a first glimpse into topics which are not routinely taught in our MSc/PhD programme. The emphasis is to introduce new concepts and techniques, and not to present full mathematical details. Bekanntgabe der Themen durch Aushang und Internet (siehe Link) |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
| |
Seminar Algebra, Geometrie und Kombinatorik |
0+2+0 |
F01/155* |
Zielgruppe |
Master-Studiengang Mathematik |
Inhalt |
Vorträge zu aktuellen Forschungsthemen der Institute für Algebra und für Geometrie sowie eingeladener Gäste. Alle Interessenten sind herzlich eingeladen. Die Themen werden im Aushang und im Internet bekannt gegeben. |
Einschreibung |
- |
Leistungsnachweis |
nach Vereinbarung |
Internet |
Aktuelle Vorträge |
| |
Arbeitsgruppentreffen Geometrie |
0+2+0 |
F01/356 |
Zielgruppe |
Masterstudiengänge Mathematik und Technomathematik u.a. Interessenten |
Inhalt |
This is the ”Monday seminar“ where members of our research group give talks on their research or other interesting mathematics we try to understand together (usually related to our research interests). Everybody is welcome to attend and to contribute. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Arbeitsgemeinschaft Analysis & Stochastik |
0+2+0 |
F01/460* |
Zielgruppe |
Master-Studiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Stochastics, Analysis |
Inhalt |
Real and Stochastic Analysis. Dynamical Systems. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Dozent∗in/Zeit/Ort |
AG Ana&Sto |
S |
Do / Thu |
13 - 16 Uhr |
WIL A124 |
|
|
|
|
Die Vorträge finden im Zeitfenster 13-16 Uhr statt - siehe Webseite für Ankündigungen |
• • • Institut für Geometrie - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul PHY-Ba-Ma-AnaFort: Fortgeschrittene Analysis für Physiker |
4+2+0 |
F01/291 |
Zielgruppe |
Bachelor-Studiengang Physik (3. Sem.) |
Vorkenntnisse |
Modul Phy-Ba-Ma-Ana-Grund |
Einschreibung |
- |
Leistungsnachweis |
- |
| |
Darstellende Geometrie und CAD (Architektur) |
1+1+0 |
F01/381 |
Zielgruppe |
Studierende Architektur |
Vorkenntnisse |
- |
Inhalt |
Das Modul Darstellende Geometrie und CAD vermittelt Abbildungsmethoden und Lösungsstrategien zur konstruktiven Bewältigung räumlicher Fragestellungen im architektonischen Kontext. Die Studierenden verfügen nach Abschluss des Moduls über ein strukturiertes räumliches Vorstellungsvermögen und beherrschen die Grundlagen für die maßgenaue und anschauliche Darstellung von Architektur in Axonometrien und Perspektiven. Sie sind in der Lage, das erworbene Wissen auch auf Freihandskizzen und CAD-Repräsentationen zu übertragen und somit entwerfend in Architekturdarstellungen einzugreifen. |
Einschreibung |
- |
Leistungsnachweis |
Zwei Belege, Klausur |
| |
Modul BIW1-09 Technische Grundlagen: Konstruktive Geometrie (Bauingenieurwesen) |
1+1+0 |
F01/385 |
Zielgruppe |
Studierende Bauingenieurwesen (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Die Lehrveranstaltung vermittelt Grundkenntnisse und praktische Anwendungen von konstruktiv geometrischen Verfahren. Sie dient der Entwicklung eines strukturierten räumlichen Vorstellungsvermögens und befähigt zur Herstellung und sachgerechten Interpretation von technischen Zeichnungen und CAD-Repräsentationen. Räumliche Objekte und Aufgaben werden anschaulich dargestellt und konstruktiv gelöst. |
Einschreibung |
- |
Leistungsnachweis |
Zwei Belege, Klausur |
Dozent∗in/Zeit/Ort |
Lordick |
VO |
Di / Tue |
4. DS (13:00-14:30) |
TRE MATH |
ungerade Woche / odd week |
|
|
|
Nestler |
ÜO |
Di / Tue |
4. DS (13:00-14:30) |
WIL C104 |
gerade Woche / even week |
|
|
|
Lordick |
ÜO |
Di / Tue |
4. DS (13:00-14:30) |
WIL B122 |
gerade Woche / even week |
|
|
|
Nestler |
ÜO |
Do / Thu |
2. DS (09:20-10:50) |
WIL C104 |
gerade Woche / even week |
|
|
|
Nestler |
ÜO |
Do / Thu |
4. DS (13:00-14:30) |
WIL B122 |
gerade Woche / even week |
|
|
|
Nestler |
ÜO |
Do / Thu |
4. DS (13:00-14:30) |
WIL B122 |
ungerade Woche / odd week |
|
|
|
Lordick |
ÜO |
Do / Thu |
4. DS (13:00-14:30) |
WIL C104 |
ungerade Woche / odd week |
|
|
|
Nestler |
ÜO |
Do / Thu |
5. DS (14:50-16:20) |
WIL C103 |
gerade Woche / even week |
|
|
|
Nestler |
ÜO |
Do / Thu |
5. DS (14:50-16:20) |
WIL C103 |
ungerade Woche / odd week |
|
|
| |
Modul D-WW-MV: Mathematik Vertiefung (Wirtschaftsingenieurwesen) |
2+2+0 |
F01/483 |
Zielgruppe |
Studierende Wirtschaftsingenieurwesen (3. Sem.) |
Vorkenntnisse |
Mathematik I und II |
Inhalt |
Vektorräume, Funktionenräume, gewöhnliche Differentialgleichungen, Integraltransformationen, mehrdimensionale Integration |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs mit Einschreibung zur Übung |
• • • Institut für Mathematische Stochastik - 2. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba MINT: Maß und Integral |
3+1+0 |
F01/421 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.), Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG und Math-Ba-LAAG |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zu den Lehrveranstaltungen |
• • • Institut für Mathematische Stochastik - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba STOCHV: Vertiefung Stochastik - Statistik |
3+1+0 |
F01/431 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH. |
Inhalt |
Das Modul behandelt die Grundlagen der Mathematischen Statistik (Deskriptive Statistik, Schätzmethodik, Konfidenzintervalle und Hypothesentests) sowie eine Auswahl weiterführender Themen (z.B. Lineare Regression, Lineare Modelle oder Varianzanalyse). In den Übungen wird die Statistiksoftware R erlernt und verwendet. |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba SEM: Wahrscheinlichkeitstheorie |
0+2+0 |
F01/435 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-PROSEM sowie ggf. weiterer Module des Pflichtbereiches abhängig von der Thematik des Seminars (hier Math-Ba-STOCH). |
Inhalt |
Für die Vortragsthemen siehe Download-Ordner im OPAL-Kurs |
Einschreibung |
direkt bei Professor Schilling |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zu den Lehrveranstaltungen |
OPAL |
OPAL-Kurs: Themen im PDF im Download-Ordner |
Dozent∗in/Zeit/Ort |
Schilling |
S |
|
|
|
|
|
|
|
Das Seminar findet in Absprache mit den Teilnehmern als Blockseminar statt. |
| |
Modul MN-SEGY/SEBS/SEMS-MAT-STOCH: Stochastik |
4+2+0 |
F01/437 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 5. Sem.; Lehramt an Mittelschulen, Fach Mathematik, 5. Sem. |
Vorkenntnisse |
Modul Analysis |
Inhalt |
siehe Modulbeschreibung |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
• • • Institut für Mathematische Stochastik - 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma MSTAT: Mathematische Statistik |
3+1+0 |
F01/442 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
| |
Modul Math Ma WTHM: Wahrscheinlichkeitstheorie mit Martingalen |
3+1+0 |
F01/447 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienbereich Stochastik. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
laut Modulbeschreibung Hinweis: Das Modul schafft Voraussetzungen für die Module Math-Ma-STOCAL, Math-Ma-STOCHP und Math-Ma-MAFIN. |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
| |
Modul Math Ma VMRM: Versicherungsmathematik - Risikomodelle |
3+1+0 |
F01/446 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
laut Modulbeschreibung Hinweis: Das Modul schafft Voraussetzungen für das Modul Math-Ma-VMPV. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request |
| |
Modul Math Ma MMAM bzw. MMRM: Choquet Kapazitäten und zufällige abgeschlossene Mengen |
2+0+0 |
F01/450 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, als Modul MMAM oder MMRM möglich Zuordnung zum Studienschwerpunkt Analysis und Stochastik, für WMath Zuordnung zum Studienbereich Stochastik |
Vorkenntnisse |
W-Theorie, Math. Statistik (Master), Grundkonzepte der Topologie |
Inhalt |
Schwache Konvergenz von Choquet-Kapazitäten, Verteilungskonvergenz von zufälligen abgeschlossenen Mengen in Hyperraum-Topologien, Argmin-Theoreme für Minimalstellen-Mengen stochastischer Prozesse |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
| |
Modul Math Ma MMAM bzw. MMRM: Die klassischen Grenzwertsätze der Wahrscheinlichkeitstheorie |
2+0+0 |
F01/451 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, als Modul MMAM oder MMRM möglich Zuordnung zum Studienschwerpunkt Analysis und Stochastik, für WMath Zuordnung zum Studienbereich Stochastik |
Vorkenntnisse |
Modul Math-Ba-STOCH |
Inhalt |
Das Bernoullische Gesetz der großen Zahlen, der lokale Grenzwertsatz von de Moivre-Laplace, der integrale Grenzwertsatz, Satz von Poisson, Gesetz vom iterierten Logarithmus, Grenzverteilungssätze über die empirischen Verteilungsfunktionen, Grenzwertsätze für Irrfahrten |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
| |
Modul Math Ma WIA: Wissenschaftliches Arbeiten (Stochastische Prozesse) |
0+2+0 |
F01/440 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Zuordnung zum Studienschwerpunkt Analysis und Stochastik Master WMath: Pflichtmodul. |
Inhalt |
Für die Vortragsthemen siehe Download-Ordner im OPAL-Kurs |
Einschreibung |
direkt bei Professor Schilling |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zu den Lehrveranstaltungen |
OPAL |
OPAL-Kurs: Themen im PDF im Download-Ordner |
Sprache / Language |
English |
Dozent∗in/Zeit/Ort |
Schilling |
S |
Do / Thu |
2. DS (09:20-10:50) |
WIL B319 |
|
|
|
• • • Institut für Mathematische Stochastik - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Arbeitsgemeinschaft Analysis & Stochastik |
0+2+0 |
F01/460 |
Zielgruppe |
Master-Studiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Stochastics, Analysis |
Inhalt |
Selected topics from real and stochastic Analysis. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
Dozent∗in/Zeit/Ort |
AG Ana&Sto |
S |
Do / Thu |
13 - 16 Uhr |
WIL A124 |
|
|
|
|
Die Vorträge finden im Zeitfenster 13-16 Uhr statt - siehe Webseite für Ankündigungen |
| |
Arbeitsgemeinschaft Mathematische Statistik |
0+2+0 |
F01/464 |
Zielgruppe |
Master-Studiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Wahrscheinlichkeitstheorie, Statistik |
Einschreibung |
- |
Leistungsnachweis |
- |
• • • Institut für Mathematische Stochastik - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Elektrotechnik) |
6+4+0 |
F01/485 |
Zielgruppe |
Studiengang Elektrotechnik (1. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
Abitur |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
Internet |
Webseite zu den Lehrveranstaltungen |
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Informationssystemtechnik) |
6+4+0 |
F01/485* |
Zielgruppe |
Studiengang Informationssystemtechnik (1. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
Internet |
Webseite zu den Lehrveranstaltungen |
| |
Modul MT-01 04 01: Algebraische und analytische Grundlagen (Mechatronik) |
6+4+0 |
F01/485+ |
Zielgruppe |
Studiengang Mechatronik (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
Internet |
Webseite zu den Lehrveranstaltungen |
| |
Modul RES-G01: Algebraische und analytische Grundlagen (Regenerative Energiesysteme) |
6+4+0 |
F01/485++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
Internet |
Webseite zu den Lehrveranstaltungen |
| |
Mathematik I: Lineare Algebra (Wirtschaftswissenschaften und Verkehrswirtschaft) |
2+2+0 |
F01/481 |
Zielgruppe |
Studierende an der Fak. Wirtschaftswissenschaften und Studierende Verkehrswirtschaft: Module BA-WW-MLA, D-WW-MLA, BA-VWI-PF1 |
Inhalt |
Zahlen (natürliche Zahlen, reelle und komplexe Zahlen), Vektorräume (lineare Unabhängigkeit, Dimension, Unterräume), Lineare Gleichungssysteme (Lösbarkeit), Lineare Optimierung (Simplexverfahren). |
Einschreibung |
- |
Leistungsnachweis |
Schein mit Note (Klausur) |
OPAL |
Alle Informationen zur Vorlesung im OPAL-Kurs |
Dozent∗in/Zeit/Ort |
Ferger |
V |
Mi / Wed |
4. DS (13:00-14:30) |
HSZ/AUDI/H |
|
|
|
|
Röder |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe OPAL-Kurs. |
| |
Modul BIO-BA 1100: Mathematik/Biostatistik (Biologie) // Modul BIO-BA 1100: Mathematik und Biostatistik (Molekulare Biotechnologie) |
2+1+0 |
F01/581 |
Zielgruppe |
Studierende Biologie und Molekulare Biotechnologie (1. Sem.) gemeinsam mit Studierenden Chemie + Lebensmittelchemie, Lehramt Chemie (1. Sem.), BBS Bautechnik und Holztechnik, Metall- und Maschinentechnik |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung, Wahrscheinlichkeitstheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent∗in/Zeit/Ort |
Kuhlisch |
V |
Mo / Mon |
2. DS (09:20-10:50) |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistenz: Biologie und LA andere |
|
|
Morherr |
Ü |
|
|
|
|
Kursassistenz: Chemie und LA Chemie |
|
|
Für die Übungen siehe Webseiten bei den Kursassistenten. |
| |
Modul Ch Ma: Mathematik für Chemiker (Chemie+Lebensmittelchemie) // Mathematik (Lehramt Fach Chemie) |
2+2+0 |
F01/581* |
Zielgruppe |
Studierende Chemie, Lebensmittelchemie, Lehramt Chemie (1. Sem.) gemeinsam mit Studierenden Biologie und Molekulare Biotechnologie (1. Sem.), Lehramt BBS Bautechnik und Holztechnik |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent∗in/Zeit/Ort |
Kuhlisch |
V |
Mo / Mon |
2. DS (09:20-10:50) |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistenz: Biologie und LA andere |
|
|
Morherr |
Ü |
|
|
|
|
Kursassistenz: Chemie und LA Chemie |
|
|
Für die Übungen siehe Webseiten bei den Kursassistenten. |
| |
Mathematik (EW-SEBS-BT-M 01: Staatsexamen Lehramt BBS Bautechnik, EW-SEBS-HT-M 01: Staatsexamen Lehramt BBS Holztechnik, EW-SEBS-MMT-Mth 01: Staatsexamen Lehramt BBS Metall- und Maschinentechnik) |
2+2+0 |
F01/581+ |
Zielgruppe |
Staatsexamen: Höheres Lehramt an berufsbildenden Schulen, Fächer Bautechnik und Holztechnik, Metall- und Maschinentechnik gemeinsam mit Studierenden der FR Chemie, Biologie, Lehramt Chemie |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent∗in/Zeit/Ort |
Kuhlisch |
V |
Mo / Mon |
2. DS (09:20-10:50) |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistenz: Biologie und LA andere |
|
|
Morherr |
Ü |
|
|
|
|
Kursassistenz: Chemie und LA Chemie |
|
|
Für die Übungen siehe Webseiten bei den Kursassistenten. |
| |
Statistik I (Sozialwissenschaften, ZIS) |
2+2+0 |
F01/492 |
Zielgruppe |
Studierende Soziologie, Medienforschung/Medienpraxis, Politikwissenschaften, Internationale Beziehungen |
Inhalt |
Einführung in SPSS, Deskriptive Statistik (Skalenniveaus, Datentypen, uni- und bivariate Verteilungen, grafische Darstellung / Kenngrößen von Verteilungen, Abhängigkeitsmaße), Wahrscheinlichkeiten, Grundprinzipien der schließenden Statistik, Signifikanztests für Ein- und Zweistichprobenproblemen und ihre Realisierung in SPSS |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Teilnahme, Klausur |
Internet |
Webseite zur Vorlesung, Übungen und PC-Praktika |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY/SEBS/SEMS-STOCH: Elementare Stochastik (Informatik) |
4+2+0 |
F01/437* |
Zielgruppe |
Diplom-Studiengang Informatik für Nebenfach Mathematik Numerik /Optimierung /Stochastik: Elementare Stochastik (gemeinsam mit SE-Lehramtsstudiengängen GYM, BBS, MS) |
Vorkenntnisse |
Modul Analysis |
Inhalt |
siehe Modulbeschreibung |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
• • • Institut für Numerische Mathematik - 2. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba NUME: Numerische Mathematik Einführung |
3+1+0 |
F01/521 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.), Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Module Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite |
OPAL |
OPAL-Kurs (ab 09.10.2018) |
Dozent∗in/Zeit/Ort |
Fischer, A. |
V |
Mo / Mon |
4. DS (13:00-14:30) |
WIL A317 |
|
|
|
|
Fischer, A. |
V |
Di / Tue |
2. DS (09:20-10:50) |
WIL C307 |
ungerade Woche / odd week |
|
|
|
N.N. |
Ü |
Mi / Wed |
1. DS (07:30-09:00) |
WIL C105 |
gerade Woche / even week |
|
|
|
N.N. |
Ü |
Mi / Wed |
1. DS (07:30-09:00) |
WIL C105 |
ungerade Woche / odd week |
|
|
|
Vanselow |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe auch Webseite und OPAL-Kurs. |
• • • Institut für Numerische Mathematik - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba OPTINUM: Optimierung und Numerik |
3+1+0 |
F01/531 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); für Diplomstudiengang Informatik = MODUL INF-D-510 'Grundlagen des Nebenfachs' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-GDIM und Math-Ba-MINT |
Inhalt |
Einführung und Beispiele, Lineare Optimierung und Dualität, Optimierung auf Graphen, Grundlagen der kontinuierlichen Optimierung, Prinzipien der diskreten Optimierung |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba SEM - Seminar (Angebot des Institutes für Numerik) |
0+2+0 |
F01/535 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenz aus den Modulen Math-Ba-NUME und Math-Ba-NUM |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
| |
Modul MN-SEGY-MAT-NUM: Numerik |
3+2+0 |
F01/570 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 7. Sem. |
Vorkenntnisse |
Kompetenzen auf Niveau der Module MN-SEGY-MAT-LAAG, MN-SEGY-MAT-ANA
und MN-SEGY-MAT-COMP |
Inhalt |
Interpolation, numerische Integration, lineare Ausgleichsrechnung,
nichtlineare Gleichungen und Gleichungssysteme, lineare Optimierung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEBS-MAT-NUM: Numerik |
3+2+0 |
F01/570* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 9. Sem. |
Vorkenntnisse |
Kompetenzen auf Niveau der Module MN-SEBS-MAT-LAAG, MN-SEBS-MAT-ANA
und MN-SEBS-MAT-COMP |
Inhalt |
Interpolation, numerische Integration, lineare Ausgleichsrechnung,
nichtlineare Gleichungen und Gleichungssysteme, lineare Optimierung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Numerische Mathematik - 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma KONOPT: Kontinuierliche Optimierung |
3+1+0 |
F01/542 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik, Studiengänge Physik im Nebenfach Mathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der Optimierung auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
laut Modulbeschreibung |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma PDENM: Numerik partieller Differentialgleichungen |
3+1+0 |
F01/543 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation' und zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Pflichtmodul Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
| |
PDENM: Numerik partieller Differentialgleichungen |
3+1+0 |
F01/543* |
Zielgruppe |
Master-Studiengang CMS - Computational Modeling and Simulation (gemeinsam mit Math. Masterstudiengängen) |
Klassifizierung |
Katalog-Angebot für Modul CMS-CMA-ELG (Computational Mathematics Basics) Teil 1; Pflichtmodul im Track Computational Mathematics (CMA) |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma MMMA: Mathematische Methoden, Modelle und ihre Anwendung |
3+1+0 |
F01/550 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
N.N. |
V |
Mi / Wed |
4. DS (13:00-14:30) |
WIL C133 |
|
|
|
|
N.N. |
V |
Fr / Fri |
2. DS (09:20-10:50) |
WIL C103 |
|
Übung integriert |
|
|
Ansprechpartner: Dr. Scheithauer |
| |
Modul MN-SEGY-MAT-MVERT: Optimierung und Numerik |
3+1+0 |
F01/531* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-GDIM und Math-Ba-MINT; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba OPTINUM - Optimierung und Numerik: Einführung und Beispiele, Lineare Optimierung und Dualität, Optimierung auf Graphen, Grundlagen der kontinuierlichen Optimierung, Prinzipien der diskreten Optimierung |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY/SEBS-MAT-SEM: Optimierung über Graphen |
0+0+2 |
F01/775 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 9. Sem. |
Inhalt |
Bestimmung von minimalen Spannbäumen, Euler-Touren, Knotenfärbungen, kürzesten Wegen und maximalen Flüssen. |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
• • • Institut für Numerische Mathematik - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Seminar des Institutes für Numerische Mathematik |
0+2+0 |
F01/555 |
Zielgruppe |
Mathematische Masterstudiengänge (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorstellung aktueller Ergebnisse zur Numerischen Mathematik, Gastvorträge |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
| |
Seminar Optimierung und optimale Steuerung |
0+2+0 |
F01/557 |
Zielgruppe |
Mathematische Masterstudiengänge (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorträge zu den Themengebieten Optimierung und optimale Steuerung sowie verwandten Gebieten |
Internet |
Aktuelle Vorträge |
| |
Seminar Numerik partieller Differentialgleichungen |
0+2+0 |
F01/556 |
Zielgruppe |
Mathematische Masterstudiengänge (Spezialisierung Numerische Mathematik) |
Vorkenntnisse |
Numerik partieller Differentialgleichungen |
Inhalt |
Aktuelle Forschungsergebnisse im Fachgebiet |
Internet |
Aktuelle Vorträge |
• • • Institut für Numerische Mathematik - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul Grundlagen Mathematik (Maschinenwesen) |
4+2+0 |
F01/591 |
Zielgruppe |
Studierende Maschinenwesen (1. Sem., Module MB-02, VNT_01, WW-A01) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
Modulprüfung (Klausur) |
OPAL |
OPAL-Kurs |
| |
Modul VW-VI-100: Lineare Algebra und Analysis für Funktionen einer Variablen (Verkehrsingenieurwesen) |
4+3+0 |
F01/595 |
Zielgruppe |
Studierende Verkehrsingenieurwesen (1. Sem.) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
Modulprüfung (Klausur) |
| |
Modul Spezielle Kapitel der Mathematik, Teil 1 (Maschinenwesen) |
2+2+0 |
F01/593 |
Zielgruppe |
Studierende Maschinenwesen (3. Sem., Module MB-06, VNT_03, WW-A03) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
entsprechend der Regelung der immatrikulierenden Fakultät |
Leistungsnachweis |
Modulprüfung am Ende von Mathematik III/2 über beide Semester |
Dozent∗in/Zeit/Ort |
Eppler |
V |
Di / Tue |
1. DS (07:30-09:00) |
HSZ/AUDI/H |
|
|
|
|
Scheithauer |
Ü |
|
|
|
|
Kursassistenz |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs beim Kursassistenten. |
| |
Modul VW-VI-102: Integraltransformationen, Integralrechnung für Funktionen mehrerer Variabler (Verkehrsingenieurwesen) |
3+2+0 |
F01/597 |
Zielgruppe |
Studierende Verkehrsingenieurwesen (3. Sem.) |
Vorkenntnisse |
Mathematik I, II für Verkehrsingenieure |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
Dozent∗in/Zeit/Ort |
Matthies |
V |
Mi / Wed |
3. DS (11:10-12:40) |
WIL A317 |
|
|
|
|
Matthies |
V |
Fr / Fri |
2. DS (09:20-10:50) |
WIL A317 |
gerade Woche / even week |
|
|
|
Herrich |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs beim Kursassistenten. |
• • • Institut für Wissenschaftliches Rechnen - 1. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba PROG: Programmieren für Mathematiker (Teil 1) |
3+2+0 |
F01/611 |
Zielgruppe |
Bachelor-Studiengang Mathematik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Einführung in das strukturierte und modulare Programmieren, mit integriertem Computerpraktikum; praxisrelevante Grundlagen der Informatik, der Programmiersprachen, der Algorithmik und des Wissenschaftlichen Rechnens |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Wissenschaftliches Rechnen - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba MOSIM: Modellierung und Simulation |
3+1+0 |
F01/631 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); Studierende Informatik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG. |
Inhalt |
- Modellbildung (Erhaltungsgleichungen, ...)
- Modellanalyse
- Lattice-Boltzmann-Methode
- Informationssuche im Web, Google Page-Rank
- Diskretisierung partieller Differentialgleichungen
- Grundlagen künstlicher neuronaler Netze
|
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Mendl |
V |
Mi / Wed |
5. DS (14:50-16:20) |
WIL C133 |
ungerade Woche / odd week |
|
|
|
Mendl |
V |
Do / Thu |
5. DS (14:50-16:20) |
WIL C133 |
|
|
|
|
Mendl |
Ü |
Mi / Wed |
5. DS (14:50-16:20) |
WIL A222/P |
gerade Woche / even week |
|
ab 22.10.18 im Raum C133 |
| |
Modul Math Ba HANA: Höhere Analysis |
3+1+0 |
F01/231 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Wissenschaftliches Rechnen - 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma FEM: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen |
3+1+0 |
F01/641 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Pflichtmodul Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Voigt |
V |
Di / Tue |
4. DS (13:00-14:30) |
WIL A222/P |
|
|
10.10.2018: Änderung für die Zeit eingetragen |
|
Voigt |
V |
Mi / Wed |
3. DS (11:10-12:40) |
WIL C206 |
|
Übung integriert |
|
| |
FEM: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen |
3+1+0 |
F01/641* |
Zielgruppe |
Master-Studiengang CMS - Computational Modeling and Simulation (gemeinsam mit Math. Masterstudiengängen) |
Klassifizierung |
Katalog-Angebot für Modul CMS-CMA-FEM; Pflichtmodul im Track Computational Mathematics (CMA) |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Voigt |
V |
Di / Tue |
4. DS (13:00-14:30) |
WIL A222/P |
|
|
10.10.2018: Änderung für die Zeit eingetragen |
|
Voigt |
V |
Mi / Wed |
3. DS (11:10-12:40) |
WIL C206 |
|
Übung integriert |
|
| |
Modul Math Ma WIA: Wissenschaftliches Arbeiten |
2+2+0 |
F01/640 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, Zuordnung zum Studienschwerpunkt Numerik, Optimierung, Modellierung und Simulation. Master WMath: Pflichtmodul. |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
| |
WIA: Wissenschaftliches Arbeiten |
2+2+0 |
F01/640* |
Zielgruppe |
Master-Studiengang CMS - Computational Modeling and Simulation (gemeinsam mit Math. Masterstudiengängen) |
Klassifizierung |
Katalog-Angebot für Modul CMS-CMA-ELG (Computational Mathematics Basics) Teil 1; Pflichtmodul im Track Computational Mathematics (CMA) |
Einschreibung |
über OPAL, siehe Link auf den Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Einschreibung |
| |
Modul Math Ma MMMA: Mathematische Methoden, Modelle und ihre Anwendung |
3+1+0 |
F01/650 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich Zuordnung zum Studienschwerpunkt Numerik, Optimierung, Modellierung und Simulation |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request |
| |
Modul Math Ma Projekt: Projektarbeit |
0+0+2 |
F01/645 |
Zielgruppe |
Master-Studiengang Technomathematik |
Klassifizierung |
Master TMath: Pflichtmodul |
Einschreibung |
Absprache mit Professor Voigt |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request |
| |
Modul MN-SEGY-MAT-MVERT: Höhere Analysis |
3+1+0 |
F01/231* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba HANA - Höhere Analysis |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY-MAT-MVERT: Modellierung und Simulation |
3+1+0 |
F01/631* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba MOSIM - Modellierung und Simulation
- Modellbildung (Erhaltungsgleichungen, ...)
- Modellanalyse
- Lattice-Boltzmann-Methode
- Informationssuche im Web, Google Page-Rank
- Diskretisierung partieller Differentialgleichungen
- Grundlagen künstlicher neuronaler Netze
|
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent∗in/Zeit/Ort |
Mendl |
V |
Mi / Wed |
5. DS (14:50-16:20) |
WIL C133 |
ungerade Woche / odd week |
|
|
|
Mendl |
V |
Do / Thu |
5. DS (14:50-16:20) |
WIL C133 |
|
|
|
|
Mendl |
Ü |
Mi / Wed |
5. DS (14:50-16:20) |
WIL A222/P |
gerade Woche / even week |
|
ab 22.10.18 im Raum C133 |
• • • Institut für Wissenschaftliches Rechnen - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Forschungsseminar des Institutes für Wissenschaftliches Rechnen |
0+2+0 |
F01/655 |
Zielgruppe |
Mathematische Masterstudiengänge u.a. Interessenten |
Inhalt |
Vorträge eingeladener Wissenschaftler zu ausgewählten Themen aus Gebieten des Wissenschaftlichen Rechnens. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
• • • Institut für Wissenschaftliches Rechnen - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Elektrotechnik) |
2+2+0 |
F01/687 |
Zielgruppe |
Studiengang Elektrotechnik (3. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Franz |
V |
Mo / Mon |
4. DS (13:00-14:30) |
HSZ/03/H |
|
|
|
|
Feldmann |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs bei der Kursassistentin. |
| |
Modul MT-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Mechatronik) |
2+2+0 |
F01/687+ |
Zielgruppe |
Studiengang Mechatronik (3. Sem.) - (gemeinsam mit Elektrotechnik, Informationssystemtechnik) |
Vorkenntnisse |
Module MT-01-04-01, MT-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Franz |
V |
Mo / Mon |
4. DS (13:00-14:30) |
HSZ/03/H |
|
|
|
|
Feldmann |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs bei der Kursassistentin. |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie ( Informationssystemtechnik ) |
2+2+0 |
F01/687* |
Zielgruppe |
Studiengang Informationssystemtechnik (3. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Franz |
V |
Mo / Mon |
4. DS (13:00-14:30) |
HSZ/03/H |
|
|
|
|
Feldmann |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs bei der Kursassistentin. |
| |
Modul RES-G05: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Regenerative Energiesysteme) |
2+2+0 |
F01/687++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (3. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module RES-G01, RES-G02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Franz |
V |
Mo / Mon |
4. DS (13:00-14:30) |
HSZ/03/H |
|
|
|
|
Feldmann |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs bei der Kursassistentin. |
| |
Modul MA-CSE-35: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen (= Math Ma FEM) |
3+1+0 |
F01/641+ |
Zielgruppe |
Master-Studiengang CSE - Computational Science and Engineering (TU Dresden gemeinsam mit der TU Bergakademie Freiberg) |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent∗in/Zeit/Ort |
Voigt |
V |
Di / Tue |
4. DS (13:00-14:30) |
WIL A222/P |
|
|
10.10.2018: Änderung für die Zeit eingetragen |
|
Voigt |
V |
Mi / Wed |
3. DS (11:10-12:40) |
WIL C206 |
|
Übung integriert |
|
• • • Professur für Didaktik der Mathematik - Lehramt: Seiteneinstiegs- und Weiterbildungsprogramm weiterführende Schulen • • •
• • • Professur für Didaktik der Mathematik - Staatsexamen Lehramt SEBS • • •
• • • Professur für Didaktik der Mathematik - Staatsexamen Lehramt SEGY • • •
• • • Professur für Didaktik der Mathematik - Staatsexamen Lehramt SEMS • • •
| |
Modul MN-SEGY-MAT-EDID (Teil 1): Einführung in die Didaktik der Mathematik |
2+0+0 |
F01/720 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 3. Sem. |
Vorkenntnisse |
- |
Inhalt |
Die Vorlesung ist die erste mathematikdidaktische Veranstaltung im Lehramtsstudium Mathematik. Sie ist Teil des Moduls EDID bestehend aus Vorlesung (3. Semester), Planungsseminar und Schulpraktischen Übungen (4. und 5. Semester). In der Vorlesung beschäftigen wir uns mit dem Lehren und Lernen von Mathematik, mit den (Bildungs-)Zielen von Mathematikunterricht und mit der didaktisch-methodischen Aufbereitung mathematischer Inhalte. Außerdem wird an vielen Stellen die Verbindung von Hochschulmathematik und Schulmathematik hergestellt und nutzbar gemacht. |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs mit Einschreibung |
| |
Modul MN-SEGY-MAT-SPUE: Schulpraktische Übungen im Fach Mathematik |
|
F01/722 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 4. oder 5. Sem. |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Planung, Durchführung und Auswertung von Mathematikunterricht |
Einschreibung |
Einschreibung abgeschlossen, Gruppeneinteilung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEGY-MAT-DIDHL: Blockpraktikum |
0+0+2 |
F01/735 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 6. Sem. (optional im 5. Sem. oder 7. Sem.) |
Vorkenntnisse |
Modul EDID (insbesondere abgeschlossene SPÜ) |
Inhalt |
4-wöchiges Blockpraktikum an der Schule + Einführungsveranstaltung (Informationen auf der Homepage und im Schaukasten der Professur) |
Einschreibung |
Einschreibung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEGY-MAT-DIDHL: Neue Medien im Mathematikunterricht |
1+1+0 |
F01/740 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 8. Sem. (optional im 5. Sem. oder im 7. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Der Einsatz elektronischer Medien, sogenannter 'Neuer Medien', im Mathematikunterricht ist Gegenstand der Lehrveranstaltung. Exemplarisch werden mathematische und geometrische Software für das Simulieren, Modellieren und Visualisieren mathematischer Schulstoffe und Inhalte vorgestellt sowie deren Einsatzmöglichkeiten im Mathematikunterricht diskutiert. Der graphikfähige und programmierbare Taschenrechner sowie Tabellenkalkulationssoftware finden Beachtung. Die Studenten bekommen einen Einblick in die didaktisch-methodische Nutzung der interaktiven Tafel. |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Stochastik |
0+0+2 |
F01/744 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Stochastik im gymnasialen Mathematikunterricht (Wahrscheinlichkeitsbegriff; Bestimmung von Wahrscheinlichkeitsverteilungen; Simulation von Zufallsversuchen; Satz von Bayes; Zufallsgrößen und ihre Verteilungen; beschreibende und beurteilende Statistik) |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analysis |
0+0+2 |
F01/742 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Analysis im gymnasialen Mathematikunterricht; Zahlenfolgen; Behandlung spezieller Funktionen; Grenzwert- und Stetigkeitsbegriff; Ableitungs- und Integralbegriff; Kurvendiskussion und Extremwertaufgaben; Einsatz des graphikfähigen Taschenrechners im Analysisunterricht, wesentliche Strategien in der Analysis) |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analytischen Geometrie |
0+0+2 |
F01/743 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Das Stoffgebiet der analytischen Geometrie gehört zum Pflichtstoff der gymnasialen Oberstufe. Im Sinne des aufbauenden fachlichen Lernens werden im Seminar zunächst Teilgebiete der synthetischen Geometrie aus der Sekundarstufe I didaktisch und praxisnah aufbereitet. So sollen insbesondere Unterschiede und gleichzeitig Anknüpfungspunkte zur analytischen Geometrie deutlich werden. Ein viel beschriebenes Problem des schulischen Mathematikunterrichts in der Oberstufe ist die einseitige Beschränkung auf eine algorithmisch-kalkülhafte Unterrichtsgestaltung. Dies birgt die Gefahr, dass Mathematik lediglich als Rezeptsammlung wahrgenommen wird. Im Seminar werden ausgewählte Inhalte der synthetischen und analytischen Geometrie so aufbereitet, dass der allgemeinbildende Charakter stärker zutage tritt. |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs mit Einschreibung |
| |
Modul MN-SEBS-MAT-EDID (Teil 1): Einführung in die Didaktik der Mathematik |
2+0+0 |
F01/720* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 3. Sem. |
Vorkenntnisse |
- |
Inhalt |
Die Vorlesung ist die erste mathematikdidaktische Veranstaltung im Lehramtsstudium Mathematik. Sie ist Teil des Moduls EDID bestehend aus Vorlesung (3. Semester), Planungsseminar und Schulpraktischen Übungen (4. und 5. Semester). In der Vorlesung beschäftigen wir uns mit dem Lehren und Lernen von Mathematik, mit den (Bildungs-)Zielen von Mathematikunterricht und mit der didaktisch-methodischen Aufbereitung mathematischer Inhalte. Außerdem wird an vielen Stellen die Verbindung von Hochschulmathematik und Schulmathematik hergestellt und nutzbar gemacht. |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs mit Einschreibung |
| |
Modul MN-SEBS-MAT-SPUE: Schulpraktische Übungen im Fach Mathematik |
|
F01/722* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 6. Sem. (optional im 5. Sem. oder im 7. Sem.) |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Planung, Durchführung und Auswertung von Mathematikunterricht |
Einschreibung |
Einschreibung abgeschlossen, Gruppeneinteilung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEBS-MAT-DIDHL: Blockpraktikum |
0+0+2 |
F01/735* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 8. Sem. (optional schon im 5. Sem. oder 7. Sem.) |
Vorkenntnisse |
Modul EDID (insbesondere abgeschlossene SPÜ) |
Inhalt |
4-wöchiges Blockpraktikum an der Schule + Einführungsveranstaltung (Informationen auf der Homepage und im Schaukasten der Professur) |
Einschreibung |
Einschreibung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Tutorium "Einsatz des GTR im Mathematikunterricht" |
(fakultativ, 0+0+2) |
F01/734 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS (insbesondere Ergänzungsbereich: EGS-SEGY-2, EGS-SEBS-2) |
Vorkenntnisse |
- |
Inhalt |
Die Veranstaltung führt in den Gebrauch eines graphikfähigen Taschenrechners vom Typ Casio ein und wendet sich an Teilnehmer ohne bzw. mit geringen Vorkenntnissen. Gearbeitet wird mit dem eigenen Rechner oder einem Leihrechner fxCG50. |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
Schriftliche Problembearbeitung (1 Basispunkt im EGS) |
OPAL |
OPAL-Kurs |
Dozent∗in/Zeit/Ort |
Woithe / Tutor |
T |
Mo / Mon |
6. DS (16:40-18:10) |
WIL C203 |
gerade Woche |
|
|
|
Blockveranstaltung 4 Termine im Oktober / November: Beginn 15.10.2018 |
| |
Modul MN-SEBS-MAT-DIDHL: Neue Medien im Mathematikunterricht |
0+0+2 |
F01/740* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 6. Sem. (optional im 5. Sem. oder im 7. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Der Einsatz elektronischer Medien, sogenannter 'Neuer Medien', im Mathematikunterricht ist Gegenstand der Lehrveranstaltung.
Exemplarisch werden mathematische und geometrische Software für das Simulieren, Modellieren und Visualisieren mathematischer Schulstoffe und Inhalte
vorgestellt sowie deren Einsatzmöglichkeiten im Mathematikunterricht diskutiert.
Der graphikfähige und programmierbare Taschenrechner sowie Tabellenkalkulationssoftware finden Beachtung.
Die Studenten bekommen einen Einblick in die didaktisch-methodische Nutzung der interaktiven Tafel. |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEBS-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Stochastik |
0+0+2 |
F01/744* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Stochastik im gymnasialen Mathematikunterricht (Wahrscheinlichkeitsbegriff; Bestimmung von Wahrscheinlichkeitsverteilungen; Simulation von Zufallsversuchen; Satz von Bayes; Zufallsgrößen und ihre Verteilungen; beschreibende und beurteilende Statistik) |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEBS-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analysis |
0+0+2 |
F01/742* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Analysis im gymnasialen Mathematikunterricht; Zahlenfolgen; Behandlung spezieller Funktionen; Grenzwert- und Stetigkeitsbegriff; Ableitungs- und Integralbegriff; Kurvendiskussion und Extremwertaufgaben; Einsatz des graphikfähigen Taschenrechners im Analysisunterricht, wesentliche Strategien in der Analysis) |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEBS-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analytischen Geometrie |
0+0+2 |
F01/743* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Das Stoffgebiet der analytischen Geometrie gehört zum Pflichtstoff der gymnasialen Oberstufe. Im Sinne des aufbauenden fachlichen Lernens werden im Seminar zunächst Teilgebiete der synthetischen Geometrie aus der Sekundarstufe I didaktisch und praxisnah aufbereitet. So sollen insbesondere Unterschiede und gleichzeitig Anknüpfungspunkte zur analytischen Geometrie deutlich werden. Ein viel beschriebenes Problem des schulischen Mathematikunterrichts in der Oberstufe ist die einseitige Beschränkung auf eine algorithmisch-kalkülhafte Unterrichtsgestaltung. Dies birgt die Gefahr, dass Mathematik lediglich als Rezeptsammlung wahrgenommen wird. Im Seminar werden ausgewählte Inhalte der synthetischen und analytischen Geometrie so aufbereitet, dass der allgemeinbildende Charakter stärker zutage tritt. |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs mit Einschreibung |
| |
Modul MN-SEMS-MAT-EDID (Teil 1): Einführung in die Didaktik der Mathematik |
2+0+0 |
F01/720** |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 3. Sem. |
Vorkenntnisse |
- |
Inhalt |
Die Vorlesung ist die erste mathematikdidaktische Veranstaltung im Lehramtsstudium Mathematik. Sie ist Teil des Moduls EDID bestehend aus Vorlesung (3. Semester), Planungsseminar und Schulpraktischen Übungen (4. und 5. Semester). In der Vorlesung beschäftigen wir uns mit dem Lehren und Lernen von Mathematik, mit den (Bildungs-)Zielen von Mathematikunterricht und mit der didaktisch-methodischen Aufbereitung mathematischer Inhalte. Außerdem wird an vielen Stellen die Verbindung von Hochschulmathematik und Schulmathematik hergestellt und nutzbar gemacht. |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs mit Einschreibung |
| |
Modul MN-SEMS-MAT-DIDMS: Blockpraktikum |
0+0+2 |
F01/736 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID (insbesondere abgeschlossene SPÜ) |
Inhalt |
4-wöchiges Blockpraktikum an der Schule + Einführungsveranstaltung (Informationen auf der Homepage und im Schaukasten der Professur) |
Einschreibung |
Einschreibung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEMS-MAT-SPUE: Schulpraktische Übungen im Fach Mathematik |
|
F01/722+ |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 4. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Planung, Durchführung und Auswertung von Mathematikunterricht |
Einschreibung |
Einschreibung abgeschlossen, Gruppeneinteilung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEMS-MAT-DIDMS: Seminar Didaktik der Algebra (Mittelschule) |
0+0+2 |
F01/731 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 6. Sem. oder 8. Sem. (optional im 5. Sem. oder 7. Sem.), wahlweise Ergänzungsbereich EGS-SEMS-3, EGS-SEGY-3, EGS-SEBS-3) |
Vorkenntnisse |
Modul MN-SEMS-MAT-EDID |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEMS-MAT-DIDMS: Seminar Didaktik der Geometrie (Mittelschule) |
0+0+2 |
F01/745 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 6. Sem. oder 8. Sem. (optional im 5. Sem. oder 7. Sem.), wahlweise Ergänzungsbereich EGS-SEMS-3, EGS-SEGY-3, EGS-SEBS-3) |
Vorkenntnisse |
Modul MN-SEMS-MAT-EDID |
Inhalt |
Der Geometrieunterricht spielt in der Sekundarstufe I eine gewichtige Rolle. Im Seminar erarbeiten wir uns anhand des Lehrplanes wesentliche Inhalte des Geometrieunterrichts und gehen dabei immer auch der Frage nach, warum diese Inhalte (für wen oder was) bedeutsam sind. Ein wichtiger Schwerpunkt des Seminares liegt auf der Frage, wie die Inhalte unterrichtet werden können. Damit Geometrie im wahrsten Sinne des Wortes 'begreifbar' wird, sollte der Unterricht in großen Teilen erfahrungsbezogen, handlungsorientiert und experimentell probierend unterrichtet werden. Daneben spielt auch der Einsatz von Dynamischer Geometrie Software für das Verstehen, Entdecken und Explorieren eine bedeutsame Rolle. Der praktische Nutzen des Seminares liegt in der exemplarischen Erarbeitung und Verfügbarmachung konkreter Unterrichtsvorschläge zu den einzelnen Themen. Das Seminar ist ausdrücklich auch für zukünftige Gymnasiallehrerinnen und -lehrer empfohlen, die einen Einblick in zentrale geometrische Themen des Unterrichts der Sekundarstufe I erlangen wollen. |
Einschreibung |
Einschreibung über OPAL vom 24.09.-12.10.2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs mit Einschreibung |
| |
Lehramt Mathematik: Grundlagen der Mathematik für Seiteneinsteiger |
4+4+0 |
F01/316 |
Zielgruppe |
Studierende Seiteneinstiegs- und Weiterbildungsprogramm weiterführende Schulen, Fach Mathematik, 1. Sem. |
Einschreibung |
im OPAL-Kurs 2018 |
OPAL |
OPAL-Kurs 2018 |
| |
Lehramt Mathematik: Einführung in die Didaktik der Mathematik für Seiteneinsteiger |
2+0+2 |
F01/720+ |
Zielgruppe |
Studierende Seiteneinstiegs- und Weiterbildungsprogramm weiterführende Schulen, Fach Mathematik, gemeinsam mit Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 3. Sem. |
Vorkenntnisse |
- |
Inhalt |
Die Vorlesung ist die erste mathematikdidaktische Veranstaltung im Lehramtsstudium Mathematik. In der Vorlesung beschäftigen wir uns mit dem Lehren und Lernen von Mathematik, mit den (Bildungs-)Zielen von Mathematikunterricht und mit der didaktisch-methodischen Aufbereitung mathematischer Inhalte. Außerdem wird an vielen Stellen die Verbindung von Hochschulmathematik und Schulmathematik hergestellt und nutzbar gemacht. |
Einschreibung |
automatisch durch Einschreibung in OPAL-Kurs 2018 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs 2018 |
Dozent∗in/Zeit/Ort |
Hoffkamp |
V |
Mo / Mon |
3. DS (11:10-12:40) |
WIL A317 |
|
Vorlesung |
|
|
Koch |
S |
Di / Tue |
3. DS (11:10-12:40) |
WIL C102 |
|
Seminar |
18.09.2018: Änderung eingetragen |
| |
Lehramt Mathematik: Weitere Angebote im 1. Semester |
|
F01/721+ |
Zielgruppe |
Studierende Seiteneinstiegs- und Weiterbildungsprogramm weiterführende Schulen, Fach Mathematik |
Dozent∗in/Zeit/Ort |
Koch |
. |
Mo / Mon |
5. DS (14:50-16:20) |
WIL C104 |
|
Sprechzeit |
|
|
|
. |
Mo / Mon |
5. DS (14:50-16:20) |
WIL C105 |
|
Gruppenarbeit |
|
|
Hofmann (Tutorin) |
T |
Di / Tue |
2. DS (09:20-10:50) |
WIL C103 |
|
Tutorium |
18.09.2018: Änderung eingetragen |
| |
Lehramt Mathematik: Analysis für Seiteneinsteiger |
4+2+0 |
F01/317 |
Zielgruppe |
Studierende Seiteneinstiegs- und Weiterbildungsprogramm weiterführende Schulen, Fach Mathematik |
Einschreibung |
im OPAL-Kurs 2017 |
OPAL |
OPAL-Kurs 2017 |
| |
Lehramt Mathematik: Stochastik für Seiteneinsteiger |
2+1+0 |
F01/319 |
Zielgruppe |
Studierende Seiteneinstiegs- und Weiterbildungsprogramm weiterführende Schulen, Fach Mathematik |
Einschreibung |
im OPAL-Kurs 2017 |
OPAL |
OPAL-Kurs 2017 |
Dozent∗in/Zeit/Ort |
Di Tella |
V |
Fr / Fri |
3. DS (11:10-12:40) |
WIL C205 |
|
|
|
|
Di Tella / Haubold |
Ü |
Do / Thu |
3. DS (11:10-12:40) |
WIL C205 |
|
Gruppe B |
|
|
Di Tella / Haubold |
Ü |
Fr / Fri |
4. DS (13:00-14:30) |
WIL C205 |
|
Gruppe A |
|
|
Baldauf |
T |
Fr / Fri |
5. DS (14:50-16:20) |
WIL C205 |
ungerade Woche |
Tutorium |
|
| |
Lehramt Mathematik: Seminar Didaktik der Geometrie für Seiteneinsteiger |
0+0+2 |
F01/320 |
Zielgruppe |
Studierende Seiteneinstiegs- und Weiterbildungsprogramm weiterführende Schulen, Fach Mathematik |
Einschreibung |
im OPAL-Kurs 2017 |
OPAL |
OPAL-Kurs 2017 |
Dozent∗in/Zeit/Ort |
Koch |
S |
Do / Thu |
2. DS (09:20-10:50) |
WIL C206 |
|
Gruppe A |
|
|
Koch |
S |
Do / Thu |
5. DS (14:50-16:20) |
WIL C205 |
|
Gruppe B |
|
• • • Professur für Didaktik der Mathematik - Weitere Lehrveranstaltungen / Ergänzungsbereich • • •
| |
Lernwerkstatt |
(fakultativ) |
F01/766 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-3, EGS-SEGY-3, EGS-SEBS-3) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Termine laut Aushang; Unterrichtsbeispiele für problemorientiertes und entdeckendes Lernen im Mathematikunterricht der Sek. I |
Einschreibung |
Petra.Woithe@tu-dresden.de |
Leistungsnachweis |
Präsentation mit Ausarbeitung |
Dozent∗in/Zeit/Ort |
Woithe |
S |
Mo / Mon |
6. DS (16:40-18:10) |
WIL C104 |
ungerade Woche / odd week |
|
|
Autor:
Christiane Weber