Archiv / Archive
Sommersemester 2018: Online-Lehrveranstaltungskatalog
Summer term 2018: Course Catalogue
Abkürzungen / abbreviations:
V, VO = Vorlesung / lecture, Ü = Übung / problem class, T = Tutorium / tutorial, S = Seminar / seminar
Categories: Zielgruppe = audience, Klassifizierung = classification, Inhalt = Curriculum, Einschreibung = inscription,
Leistungsnachweis = type of examination,
Dozent/Zeit/Ort = Lecturer/Time/Venue
Master Technomathematik / Technomathematics
Die Modulbeschreibungen finden Sie in der Studienordnung:
Anlage 1: Modulbeschreibungen
• • • Pflichtmodule (im 1. Semester empfohlen) • • •
| |
Modul Math Ma MODSEM: Modellierungsseminar (WR) |
0+4+0 |
F01/644 |
Zielgruppe |
Master-Studiengang Technomathematik |
Klassifizierung |
Master TMath: Pflichtmodul |
Vorkenntnisse |
Es werden Kompetenzen aus den Modulen Math-Ma-PDEANA, Math-Ma-FEM, Math-Ma-PDENM vorausgesetzt. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite Seminare |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
| |
Modul Math Ma Projekt: Projektarbeit |
0+0+2 |
F01/645 |
Zielgruppe |
Master-Studiengang Technomathematik |
Klassifizierung |
Master TMath: Pflichtmodul |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Katalog für den Mathematischen Wahlpflichtbereich • • •
| |
Modul Math Ma ALLALG - Allgemeine Algebra |
3+1+0 |
F01/141 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Algebra, Geometrie und diskrete Strukturen' und 'Analysis und Stochastik' . Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Algebra, Geometrie und diskrete Strukturen' und 'Analysis und Stochastik'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Es werden Themen der allgemeinen geometrischen Algebra behandelt. |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma DISMAT: Modelltheorie / Model Theory |
3+1+0 |
F01/143 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik, Informatik (Master und Diplom mit Nebenfach Mathematik) |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request (Summer term 2018: German) |
| |
Modul Math Ma DYSYSV: Dynamische Systeme – Moderne Konzepte und Anwendungen |
3+1+0 |
F01/241 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik; Master Physik - Nebenfach Mathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'. |
Vorkenntnisse |
-Grundkenntnisse zu Differential- bzw. Differenzengleichungen. |
Inhalt |
Schwerpunkte der LV sind grundlegende Konzepte der Regelungstheorie, insbes. für lineare Systeme, wie z.B. Steuerbarkeit, Beobachtbarkeit und Eingangs-Ausgangs-Stabilität. Weiterführende Themen sind u.a. Analyse im Frequenzbereich und optimale Steuerung. |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request (Summer term 2018: German) |
| |
Modul Math Ma FANA: Funktionalanalysis |
3+1+0 |
F01/243 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen' Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen' Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'. |
Vorkenntnisse |
laut Modulbeschreibung |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
| |
Modul Math Ma MANA: Methoden der Analysis |
3+1+0 |
F01/244 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen' Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen' Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'. |
Vorkenntnisse |
laut Modulbeschreibung |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English |
| |
Modul Math Ma GEOGT: Geometrische Gruppentheorie |
3+1+0 |
F01/343 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
laut Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request (Summer term 2018: English) |
Dozent/Zeit/Ort |
Dowerk |
V |
Di / Tue |
2. DS (09:20-10:50) |
WIL C102 |
|
|
22.03.2018: Raumänderung eingetragen |
|
Dowerk |
V |
Do / Thu |
3. DS (11:10-12:40) |
WIL C307 |
|
Übung integriert |
|
| |
Modul Math Ma VMPV: Versicherungsmathematik - Prognoseverfahren |
3+1+0 |
F01/445 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienbereich Stochastik |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ma-VMRM. |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request (Summer term 2018: German) |
| |
Modul Math Ma STOCHP: Stochastische Prozesse |
3+1+0 |
F01/444 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienbereich Stochastik |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ma-WTHM. |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English |
| |
Modul Math Ma DISOPT: Diskrete Optimierung |
3+1+0 |
F01/541 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik; Master Physik - Nebenfach Mathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Algebra, Geometrie und diskrete Strukturen' und 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Algebra, Geometrie und diskrete Strukturen' und 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der Optimierung auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Beispiele und Grundbegriffe, Branch and Bound, Branch and Cut, Polyedertheorie, ganzzahlige Polyeder und totale Unimodularität, ganzzahlige Gitter, Schnittebenenverfahren, Dynamische Optimierung, Flüsse in Graphen, Greedy-Algorithmen und Matroide, Komplexität von Problemen und Algorithmen. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
| |
Modul Math Ma PDENMW: Numerik mit partiellen Differentialgleichungen – weiterführende Konzepte |
3+1+0 |
F01/545 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Grundkenntnisse der Numerik von partiellen
Differentialgleichungen; Grundwissen in Differentialgeometrie ist
wünschenswert |
Inhalt |
Der Schwerpunkt der Veranstaltung liegt bei der numerischen Analysis von Finiten Elemente Methoden zur Behandlung partieller
Differentialgleichungen auf und in Untermannigfaltigkeiten. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request (Summer term 2018: German) |
| |
Modul Math Ma MKMECH: Mathematische Kontinuumsmechanik |
3+1+0 |
F01/646 |
Zielgruppe |
Mathematische Masterstudiengänge sowie Studierende Physik, Maschinenbau |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Empfohlen sind Grundkenntnisse zu partiellen Differentialgleichungen und zur Funktionalanalysis. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request (Summer term 2018: German) |
| |
Modul Math Ma SCCOMP: Wissenschaftliches Rechnen – Fortgeschrittene Aspekte |
3+1+0 |
F01/642 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus den Gebieten Modellierung und Simulation auf Bachelor-Niveau und abhängig von der inhaltlichen Ausrichtung ggf. Grundkenntnisse zu partiellen Differentialgleichungen auf Bachelor-Niveau. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request (Summer term 2018: English) |
| |
Modul Math Ma SCPROG: Objektorientiertes Programmieren mit Java |
2+2+0 |
F01/643 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Inhalt |
Die grundlegenden Konzepte objektorientierter Programmiersprachen wie Klassen, Vererbung, Datenkapselung, Überladung, Polymorphie, Late Binding, generische Typen und Ausnahmen werden anhand von Beispielen in Java erklärt und im Computerpraktikum zur Lösung typischer Aufgaben eingesetzt.
Teile der umfangreichen Java-Klassenbibliothek, insbesondere Collections und Concurrency-Klassen, werden ebenfalls behandelt. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request (Summer term 2018: English) |
• • • Katalog für die Module
MMAM: 'Modelle und Methoden der Angewandten Mathematik' und
MMRM: 'Modelle und Methoden der Reinen Mathematik' • • •
| |
Modul Math Ma MMRM: Universelle Algebren und Koalgebren |
2+0+0 |
F01/150 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Viele Strukturen der Mathematik (und besonders der Algebra) lassen sich durch universelle Algebren beschreiben. Dual dazu eignen sich Koalgebren für die Beschreibung dynamischer Systeme wie sie in der Informatik benutzt werden. Die Vorlesung gibt eine Einführung in allgemeine algebraische Strukturen (Algebren und Koalgebren, z.T. Kategorien) und Kalküle: u.a. Homomorphismen, Kongruenzen, Produkte, Terme und Termalgebren, Varietäten, Gleichungstheorien, Funktoren, Bisimulationen dynamischer Systeme. |
Leistungsnachweis |
in Absprache mit dem Dozenten |
Sprache / Language |
Deutsch |
| |
Modul Math Ma MMRM: Modelle und Methoden der Reinen Mathematik |
3+1+0 |
F01/350 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik u.a. Interessenten |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Einschreibung |
Einschreibung über OPAL |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English |
| |
Modul Math Ma MMAM: Modelle und Methoden der angewandten Mathematik |
3+1+0 |
F01/451 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, als Modul MMAM oder MMRM möglich |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
| |
Modul Math Ma MMAM: Modelle und Methoden der angewandten Mathematik |
3+1+0 |
F01/450 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, als Modul MMAM oder MMRM möglich |
Vorkenntnisse |
Wahrscheinlichkeitstheorie mit Martingalen; empfohlen: Finanzmathematik |
Inhalt |
Finanzmarktmodelle in stetiger Zeit, Lokale und stochastische Volatilitätsmodelle, Zinsstrukturmodelle, Arbitragetheorie in stetiger Zeit, Numerische Methoden, ggf. fraktionelle Modelle und/oder Levy-Modelle |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request (Summer term 2018: English) |
| |
Modul Math Ma MMAM: Spieltheorie |
3+1+0 |
F01/550 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Inhalt |
In dieser Lehrveranstaltung geht es um Nichtkooperative Spieltheorie.
Geplante Inhalte sind Zwei-Personen-Spiele, Kontinuierliche N-Personen-Spiele, Verallgemeinerte Nash-Gleichgewichtsprobleme sowie Numerische Verfahren für (verallgemeinerte) Nash-Gleichgewichtsprobleme. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Katalog der Angebote für das Modul WIA - Wissenschaftliches Arbeiten • • •
| |
Modul Math Ma WIA: Wissenschaftliches Arbeiten |
2+2+0 |
F01/140 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite Seminare |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Schmidt, St. |
V |
Mi / Wed |
2. DS (09:20-10:50) |
SE2/0201/U |
|
|
31.03.2018: Zeit und Ort geändert |
|
Schmidt, St. |
V |
* |
|
|
|
|
|
|
* Terminfestlegung in der 1. Vorlesungswoche nach Absprache mit dem Vorlesenden |
| |
Modul Math Ma WIA: Internetseminar Functional Calculus |
0+2+0 |
F01/240 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik u.a. Interessenten |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Sprache / Language |
English |
| |
Modul Math Ma WIA: Vektorbündel, charakteristische Klassen und K-Theorie / Vector bundles, characteristic classes and K-theory |
2+2+0 |
F01/341 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik u.a. Interessenten |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Inhalt |
Deutsch:
Diese Veranstaltung (gemischt als Vorlesung / Seminar organisiert) ist als Vertiefung in Algebraischer Topologie gedacht. In der algebraischen Topogie ist der sogenannte Satz vom gekämmten Igel bekannt, welcher besagt, dass es auf der zweidimensionalen Sphäre kein stetiges nirgends verschwindendes Vektorfeld existiert. Tatsächlich ist diese Behauptung die Manifestation einer tieferen Verbindung zwischen algebraischer Topologie und ihrer Invarianten und der Theorie von Vektorbündeln – stetigen Familien von Vektorräumen über einem topologischen Raum (ein Beispiel ist das Tangentialbündel einer Mannigfaltigkeit). Die untersuchung dieser Verbindung hat in der zweiten Hälfte vom 20. Jahrhundert die algebraische Topologie stark geprägt und hat insbesondere zur Entdeckung der K-Theorie geführt, die heutzutage nicht nur eine wichtige Rolle in der Mathematik spielt, sondern auch Anwendungen in der Festkörperphysik gefunden hat (Klassifikation von topologischen Isolatoren). In dieser Veranstaltung werden wir Grundlagen der Vektorbündeltheorie, der K-Theorie und ihrer Zusammenhänge mit anderen Invarianten der algebraischen Topologie (Homologie/Kohomologie) kennenlernen.
Englisch:
This course (a mix of a lecture course and a seminar / reading group) is continuing with algebraic topology. Classic algebraic topology serves us with the famous 'hairy ball theorem' which says that there is no nowhere vanishing continuous vector field on a two-dimensional sphere. This theorem is actually a manifestation of a deeper connection between algebraic topology and theory of vector bundles – continuous families of vector spaces over a topological space (e.g. the tangent bundle of a manifold). The investigation of this connection has greatly influenced algebraic topology in the second part of the 20th century and lead to the discovery of K-theory which not only plays a prominent role in modern mathematics, but also has some applications in the solid state physics (in classifying topological insulators). In this course we will learn theory of vector bundles, K-theory and their connections to more "classical" invariants of algebraic topology (homology/cohomology). |
Einschreibung |
Einschreibung über OPAL |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite Seminare |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Sprache / Language |
English on request (Summer term 2018: English) |
| |
Modul Math Ma WIA: Geometrische Flüsse |
2+2+0 |
F01/340 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Alle Informationen zum Seminar |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Sprache / Language |
English on request (Summer term 2018: German) |
| |
Modul Math Ma WIA: Quantitative Risk Theory |
2+2+0 |
F01/440 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Inhalt |
In this class we will study and discuss various concepts of quantitative risk theory and their applications in different areas of science. Hereby we mainly follow the book Klüppelberg, Straub, Welpe: 'Risk - A Multidisciplinary Introduction'.
Needed prerequisites are standard concepts of probability theory and/or statistics as taught in undergraduate classes. The language (English/German) of this class will be chosen upon demand." |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite Seminare |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Sprache / Language |
English on request (Summer term 2018: German) |
Dozent/Zeit/Ort |
Behme |
V |
Di / Tue |
4. DS (13:00-14:30) |
|
|
|
|
|
Behme |
V |
Di / Tue |
5. DS (14:50-16:20) |
|
|
|
11.04.2018: Änderung für beide Zeiten eingetragen |
| |
Modul Math Ma WIA: PDEs and Manifolds |
2+2+0 |
F01/640 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Inhalt |
In this class, numerical methods for partial differential equations with the domain a manifold or the range a manifold, will be studied and discussed. We want to look at the implementation of these methods and get an understanding of applications for PDEs on and in manifolds. Examples of the considered methods include the surface finite element method, trace FEM, diffuse interface and levelset methods. Needed requirements are a basic knowledge of numerical methods for PDEs, like the finite element method, and some programming skills. The course will be in English on request. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite Seminare |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Sprache / Language |
English on request (Summer term 2018: German) |
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Seminar Algebra, Geometrie und Kombinatorik |
0+2+0 |
F01/155 |
Zielgruppe |
Master-Studiengang Mathematik |
Inhalt |
Vorträge zu aktuellen Forschungsthemen der Institute für Algebra und für Geometrie sowie eingeladener Gäste. Alle Interessenten sind herzlich eingeladen. Die Themen werden im Aushang und im Internet bekannt gegeben. |
Einschreibung |
- |
Leistungsnachweis |
nach Vereinbarung |
Internet |
Aktuelle Vorträge |
| |
Algebra: International Seminar (in englischer Sprache) |
0+2+0 |
F01/156 |
Zielgruppe |
Mathematische Masterstudiengänge, Studierende Computational Logic, Doktoranden, Gäste |
Inhalt |
Im Seminar kommen bevorzugt aktuelle Forschungsergebnisse zur Diskussion, insbesondere solche, die von Mitgliedern und Gästen des Instituts für Algebra erarbeitet werden. Weil meist ausländische Wissenschaftler teilnehmen, ist die Arbeitssprache Englisch. |
Einschreibung |
- |
Leistungsnachweis |
nach Vereinbarung |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
| |
Seminar: Musik, Mathematik, Kognition |
0+2+0 |
F01/157 |
Zielgruppe |
Mathematische Masterstudiengänge und alle Interessenten |
| |
Oberseminar Analysis |
0+2+0 |
F01/255 |
Zielgruppe |
Mathematische Masterstudiengänge, Studierende Physik |
Vorkenntnisse |
Solide Kenntnisse in Funktionalanalysis und auf dem Gebiet der Partiellen Differentialgleichungen |
Inhalt |
Lose Folge von Vorträgen zu ausgewählten Themen der Analysis. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Seminar: Themen der Mathematischen Physik |
0+2+0 |
F01/257 |
Zielgruppe |
Studierende Physik mit Nebenfach Mathematik, Studierende in den Math. Masterstudiengängen |
Inhalt |
Es werden ausgewählte Themen der mathematischen Physik behandelt: Semiklassische Analysis - Übergang zwischen klassischer Mechanik und Quantenmechanik; Pseudodifferentialoperatoren, Weylsche Gesetze, WKB-Näherung |
Einschreibung |
siehe eigene Internetseite des Seminars |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Dozent/Zeit/Ort |
Kalauch/ Timmermann |
S |
|
|
|
|
|
12.03.2018 |
|
Bitte beachten: Die Veranstaltung kann leider nicht stattfinden. |
| |
Institutsseminar Geometrie |
0+2+0 |
F01/355 |
Zielgruppe |
Masterstudiengänge Mathematik und Technomathematik u.a. Interessenten |
Inhalt |
Vorträge zur Geometrie und ihren Anwendungen. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
Thom |
S |
Di / Tue |
5. DS (14:50-16:20) |
WIL A120 |
|
|
|
| |
Arbeitsgruppentreffen Geometrie |
0+2+0 |
F01/356 |
Zielgruppe |
Masterstudiengänge Mathematik und Technomathematik u.a. Interessenten |
Inhalt |
This is the ”Monday seminar“ where members of our research group give talks on their research or other interesting mathematics we try to understand together (usually related to our research interests). Everybody is welcome to attend and to contribute. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
Dozent/Zeit/Ort |
Thom / Alekseev |
S |
Mo / Mon |
5. DS (14:50-16:20) |
WIL A317 |
|
|
|
|
Thom / Alekseev |
S |
Mo / Mon |
6. DS (16:40-18:10) |
WIL A317 |
|
|
17.04.2018: Raumänderung eingetragen |
|
Bitte beachten: am 7. Mai und am 28. Mai abweichend im Raum WIL C 105 |
| |
Forschungsthemen aus ERC-Projekt: Machine learning for mathematicians |
0+2+0 |
F01/357 |
Zielgruppe |
Masterstudiengänge Mathematik und Technomathematik u.a. Interessenten |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Arbeitsgemeinschaft Analysis & Stochastik |
0+2+0 |
F01/460 |
Zielgruppe |
Masterstudiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Stochastics, Analysis |
Inhalt |
Selected topics from real and stochastic Analysis. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Sprache / Language |
English |
| |
Seminar des Institutes für Numerische Mathematik |
0+2+0 |
F01/555 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorstellung aktueller Ergebnisse zur Numerischen Mathematik, Gastvorträge |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Seminar Optimierung und optimale Steuerung |
0+2+0 |
F01/557 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorträge zu den Themengebieten Optimierung und optimale Steuerung sowie verwandten Gebieten, siehe auch: www.math.tu-dresden.de/num/body/nlgl_opt.html |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
| |
Seminar Differentialgleichungen |
0+2+0 |
F01/556 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik (Spezialisierung Numerische Mathematik) |
Vorkenntnisse |
Numerik partieller Differentialgleichungen |
Inhalt |
Aktuelle Forschungsergebnisse im Fachgebiet |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
| |
Forschungsseminar des Institutes für Wissenschaftliches Rechnen |
0+2+0 |
F01/655 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Inhalt |
Vorträge eingeladener Wissenschaftler zu ausgewählten Themen aus Gebieten des Wissenschaftlichen Rechnens. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs