Archiv / Archive
Sommersemester 2018: Online-Lehrveranstaltungskatalog
Summer term 2018: Course Catalogue
Abkürzungen / abbreviations:
V, VO = Vorlesung / lecture, Ü = Übung / problem class, T = Tutorium / tutorial, S = Seminar / seminar
Categories: Zielgruppe = audience, Klassifizierung = classification, Inhalt = Curriculum, Einschreibung = inscription,
Leistungsnachweis = type of examination,
Dozent/Zeit/Ort = Lecturer/Time/Venue
Bachelor Mathematik / Mathematics
3. Studienjahr / 3rd year
Die Modulbeschreibungen finden Sie in der Studienordnung:
Anlage 1: Modulbeschreibungen
• • • Mathematischer Wahlpflichtbereich • • •
| |
Modul Math Ba ALGSTR Algebraische Strukturen |
3+1+0 |
F01/131 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.), für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach', |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Inhalt |
2. Teil des Moduls Math Ba ALGSTR, siehe Webseite zur Vorlesung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fehm |
V |
Mi / Wed |
3. DS (11:10-12:40) |
WIL A120 |
|
|
|
|
Fehm |
V |
Fr / Fri |
1. DS (07:30-09:00) |
WIL C129 |
|
Übung integriert |
|
| |
Modul Math Ba ALGSTR Algebraische Strukturen: Algebraic Number Theory |
3+1+0 |
F01/132 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.), für Master Höheres Lehramt an Gymnasien = Angebot für Modul Math-MaL-VERT-G im 2. Sem.; für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach', |
Vorkenntnisse |
- Vorlesung ALGZTH Elemente der Algebra und Zahlentheorie, - linear algebra |
Inhalt |
2. Teil des Moduls Math Ba ALGSTR
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, etc. These properties, such as whether a ring admits unique factorization and the behavior of ideals, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. The main topics which will be discussed in the course are principal ideal domains, integral elements, Noetherian rings, discrete valuation rings, Dedekind domains, decomposition of a prime ideal in a field extension, class group, and Dirichlet unit's theorem.
Bibliography: J. Neukirch: Algebraic Number Theory, P. Samuel: Algebraic Number Theory, J.-P. Serre: Local Fields |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English |
Dozent/Zeit/Ort |
Legrand |
V |
Mo / Mon |
5. DS (14:50-16:20) |
WIL C133 |
|
|
|
|
Legrand |
V |
Do / Thu |
5. DS (14:50-16:20) |
WIL C133 |
|
Übung integriert |
21.02.2018: Änderung Dozent |
| |
Modul Math Ba HANA Höhere Analysis: Funktionentheorie |
3+1+0 |
F01/231 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.), Master Physik - Nebenfach Mathematik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG |
Inhalt |
Die Funktionentheorie ist die Theorie der Funktionen einer komplexen
Variablen, und gehört zu den ästhetischsten Teilgebieten der Analysis mit Verbindungen zur Geometrie, der Zahlentheorie, der Funktionalanalysis / Operatortheorie oder der Theorie der partiellen Differentialgleichungen. Im ersten Teil werden wir kurz die wichtigsten Eigenschaften holomorpher (= komplex differenzierbarer) Funktionen einer komplexen Variablen besprechen. Unter anderem werden wir sehen, daß eine komplex differenzierbare Funktion automatisch beliebig oft differenzierbar ist, womit sich die Theorie wesentlich von der Analysis der Funktionen einer reellen Veränderlichen unterscheidet. Wir lernen aber noch andere überraschende Eigenschaften holomorpher Funktionen kennen. Im zweiten Teil sollen Verbindungen zu klassischen Problem der Geometrie und der Zahlentheorie (Riemannsche Vermutung) aufgezeigt werden. Die Riemannsche Vermutung gehört zu den 23 Hilbertschen Problemen aus dem Jahr 1900 und zu den sieben Milleniumsproblemen aus dem Jahr 2000. Für einen Beweis oder ein Gegenbeispiel zur Riemannschen Vermutung ist ein Preis von einer Million Dollar ausgelobt. |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba HANA Höhere Analysis: Partielle Differentialgleichungen |
3+1+0 |
F01/232 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.), Master Physik - Nebenfach Mathematik |
Vorkenntnisse |
Kompetenzen aus der Analysis I und der linearen Algebra (Module Math-Ba-ANAG und Math-Ba-LAAG oder äquivalentes) |
Inhalt |
|
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba DGEO Differentialgeometrie |
3+1+0 |
F01/331 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.), Master Physik - Nebenfach Mathematik |
Vorkenntnisse |
Grundkenntnisse aus der Differentialgeometrie, z.B aus dem ersten Teil des Moduls |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba STOCHV: Stationäre Prozesse |
3+1+0 |
F01/431 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.) |
Vorkenntnisse |
Modul Math BA STOCH |
Inhalt |
Die Vorlesung bietet eine Einführung in die Theorie und Anwendung stationärer Prozesse. Kenntnisse aus der Theorie stochastischer Prozesse werden nicht vorausgesetzt. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba OPTINUM Optimierung und Numerik |
3+1+0 |
F01/531 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.) |
Vorkenntnisse |
laut Modulbeschreibung |
Inhalt |
Teil 2 des Moduls |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba MOSIM: Modellierung und Simulation |
3+1+0 |
F01/631 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.), Studierende Physik, Informatik |
Vorkenntnisse |
Modul-Teil 1 |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
Dozent/Zeit/Ort |
Mendl |
V |
Di / Tue |
3. DS (11:10-12:40) |
WIL C204 |
|
|
|
|
Mendl |
Ü |
Do / Thu |
3. DS (11:10-12:40) |
WIL C129 und PC-Pool |
|
Übung integriert |
|
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs