Archiv / Archive
Lehrveranstaltungen: Wintersemester 2017 / 2018
Staatsexamen Höheres Lehramt an Gymnasien, studiertes Fach Mathematik
5. Studienjahr
• • • Katalog für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung • • •
|
| |
Modul MN-SEGY-MAT-MVERT: Galoistheorie |
4+0+0 |
F01/132* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ba-ALGZTH; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Fehm |
V |
Mi |
6. DS |
WIL C129 |
|
|
11.08.2017: Änderung für die Zeit eingetragen |
|
Fehm |
V |
Fr |
2. DS |
WIL C133 |
|
|
14.08.2017: Änderung für Ort und Zeit eingetragen |
| |
Modul MN-SEGY-MAT-MVERT: Diskrete Strukturen |
4+0+0 |
F01/131* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Lehtonen |
V |
Do |
3. DS |
WIL C133 |
|
|
|
|
Lehtonen |
V |
Di |
4. DS |
WIL C129 |
|
|
14.08.2017: Änderung für Ort und Zeit eingetragen |
| |
Modul MN-SEGY-MAT-MVERT: Ordnungsstrukturen |
3+1+0 |
F01/142* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ba-ALGZTH; ggf. Absprache mit dem Dozenten |
Inhalt |
Modul Math Ma ORDSTR: Ordnungsstrukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Schmidt, St. |
V |
Mo |
3. DS |
WIL C129 |
|
|
|
|
Schmidt, St. |
V |
Di |
3. DS |
WIL A124 |
|
|
18.09.2017: Änderung für den Modultitel eingetragen |
| |
Modul MN-SEGY-MAT-MVERT: Einführung Funktionalanalysis |
3+1+0 |
F01/231* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba HANA - Höhere Analysis |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Siegmund |
V |
Di |
1. DS |
WIL C129 |
ungerade Woche |
|
|
|
Siegmund |
V |
Mi |
3. DS |
WIL C129 |
|
|
|
|
Siegmund |
Ü |
Di |
1. DS |
WIL C129 |
gerade Woche |
|
|
| |
Modul MN-SEGY-MAT-MVERT: Differentialgeometrie |
3+1+0 |
F01/331* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-GEO, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba DGEO - Differentialgeometrie |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Krähmer |
V |
Mi |
2. DS |
WIL A120 |
|
|
|
|
Krähmer |
V |
Do |
1. DS |
WIL C133 |
gerade Woche |
(wird wahrscheinlich verlegt) |
|
|
N.N. |
Ü |
Mi |
5. DS |
WIL C106 |
gerade Woche |
|
|
|
N.N. |
Ü |
Mi |
5. DS |
WIL C106 |
ungerade Woche |
|
|
| |
Modul MN-SEGY-MAT-MVERT: Optimierung und Numerik |
3+1+0 |
F01/531* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-GDIM und Math-Ba-MINT; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba OPTINUM - Optimierung und Numerik: Einführung und Beispiele, Lineare Optimierung und Dualität, Optimierung auf Graphen, Grundlagen der kontinuierlichen Optimierung |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
| |
Modul MN-SEGY-MAT-MVERT: Modellierung und Simulation |
3+1+0 |
F01/631* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-GDIM, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba MOSIM - Modellierung und Simulation |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Mendl |
V |
Di |
3. DS |
WIL A120 |
ungerade Woche |
|
|
|
Mendl |
V |
Do |
5. DS |
WIL C133 |
|
|
|
|
Mendl |
Ü |
Di |
3. DS |
WIL B221/P |
gerade Woche |
|
|
• • • Katalog für das Modul SEM - Mathematisches Seminar • • •
|
Dozent/Zeit/Ort |
Jachan |
S |
Mi |
2. DS |
WIL C205 |
|
|
|
| |
Modul MN-SEGY/SEBS-MAT-SEM Mathematisches Seminar: Geometrie |
0+0+2 |
F01/773 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 9. Sem. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare' |
Dozent/Zeit/Ort |
Alekseev |
S |
Fr |
4. DS |
WIL A221 |
|
|
|
| |
Modul MN-SEGY/SEBS-MAT-SEM Mathematisches Seminar: Lineare Optimierung und Anwendungen |
0+0+2 |
F01/775 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 9. Sem. |
Inhalt |
Modellierung, graphische Lösung linearer Optimierungsprobleme, Simplexverfahren, Transportoptimierung |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare' |
Dozent/Zeit/Ort |
Herrich |
S |
Do |
5. DS |
WIL C104 |
|
|
|
• • • Weitere Lehrveranstaltungen bzw.
Lehrangebot im Rahmen des Ergänzungsbereichs für Lehramts-Studiengänge mit staatlichem Abschluss - Angebotskatalog der Fachrichtung Mathematik für Studierende des Fachs Mathematik • • •
| |
Tutorium "Einsatz interaktiver Tafeln im Mathematikunterricht" |
(fakultativ, 0+0+2) |
F01/739 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-2, EGS-SEGY-2, EGS-SEBS-2) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Das Tutorium dient als Vorbereitung zur Nutzung der interaktiven Tafel in Studium und Schule. Neben der Vermittlung von Fertigkeiten im Umgang mit der interaktiven Tafel als Projektions- und Präsentationsfläche gibt dieses Tutorium vor allem einen Überblick über die Nutzung der Software ActiveInspire. Anhand ausgewählter Situationen werden didaktische Einsatzmöglichkeiten der interaktiven Tafel im Mathematikunterricht entwickelt. |
Einschreibung |
über OPAL |
Leistungsnachweis |
Entwicklung und Präsentation eines Tafelbildes (2 Basispunkte – BW 6, Ergänzungsstudien neues Staatsexamen) |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Koch / Baldauf |
Ü |
|
|
|
|
|
18.09.2017: Zeit eingetragen |
|
Blockveranstaltung vom 26.02. bis 02.03.2018, jeweils 2. bis 4. DS |
| |
Lernwerkstatt |
(fakultativ) |
F01/766 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-3, EGS-SEGY-3, EGS-SEBS-3) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Termine laut Aushang; Unterrichtsbeispiele für problemorientiertes und entdeckendes Lernen im Mathematikunterricht der Sek. I |
Einschreibung |
Petra.Woithe@tu-dresden.de |
Leistungsnachweis |
Präsentation mit Ausarbeitung |
Dozent/Zeit/Ort |
Woithe |
S |
Mo |
6. DS |
WIL C104 |
ungerade Woche |
|
|
| |
Modul MN-SEMS-MAT-DIDMS: Seminar Didaktik der Geometrie (Mittelschule) |
0+0+2 |
F01/745 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 6. Sem. oder 8. Sem. (optional im 7. Sem.), wahlweise Ergänzungsbereich EGS-SEMS-3, EGS-SEGY-3, EGS-SEBS-3) |
Vorkenntnisse |
Modul MN-SEMS-MAT-EDID |
Inhalt |
Der Geometrieunterricht spielt in der Sekundarstufe I eine gewichtige Rolle. Im Seminar erarbeiten wir uns anhand des Lehrplanes wesentliche Inhalte des Geometrieunterrichts und gehen dabei immer auch der Frage nach, warum diese Inhalte (für wen oder was) bedeutsam sind. Ein wichtiger Schwerpunkt des Seminares liegt auf der Frage, wie die Inhalte unterrichtet werden können. Damit Geometrie im wahrsten Sinne des Wortes 'begreifbar' wird, sollte der Unterricht in großen Teilen erfahrungsbezogen, handlungsorientiert und experimentell probierend unterrichtet werden. Daneben spielt auch der Einsatz von Dynamischer Geometrie Software für das Verstehen, Entdecken und Explorieren eine bedeutsame Rolle. Der praktische Nutzen des Seminares liegt in der exemplarischen Erarbeitung und Verfügbarmachung konkreter Unterrichtsvorschläge zu den einzelnen Themen. Das Seminar ist ausdrücklich auch für zukünftige Gymnasiallehrerinnen und -lehrer empfohlen, die einen Einblick in zentrale geometrische Themen des Unterrichts der Sekundarstufe I erlangen wollen. |
Einschreibung |
Einschreibung über OPAL vom 25.09.-23.10.2017 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Hoffkamp |
S |
Di |
5. DS |
WIL C105 |
|
|
|
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs