Archiv / Archive
Lehrveranstaltungen: Wintersemester 2017 / 2018
Staatsexamen Höheres Lehramt an Berufsbildenden Schulen, studiertes Fach Mathematik
4. Studienjahr
• • • Didaktik spezieller Gebiete • • •
| |
Modul MN-SEBS-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analysis |
0+0+2 |
F01/742* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Analysis im gymnasialen Mathematikunterricht; Zahlenfolgen; Behandlung spezieller Funktionen; Grenzwert- und Stetigkeitsbegriff; Ableitungs- und Integralbegriff; Kurvendiskussion und Extremwertaufgaben; Einsatz des graphikfähigen Taschenrechners im Analysisunterricht, wesentliche Strategien in der Analysis) |
Einschreibung |
Einschreibung über OPAL vom 25.09.-23.10.2017 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Hellwig |
S |
Di |
5. DS |
WIL C203 |
|
|
|
| |
Modul MN-SEBS-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analytischen Geometrie |
0+0+2 |
F01/743* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Das Stoffgebiet der analytischen Geometrie gehört zum Pflichtstoff der gymnasialen Oberstufe. Im Sinne des aufbauenden fachlichen Lernens werden im Seminar zunächst Teilgebiete der synthetischen Geometrie aus der Sekundarstufe I didaktisch und praxisnah aufbereitet. So sollen insbesondere Unterschiede und gleichzeitig Anknüpfungspunkte zur analytischen Geometrie deutlich werden. Ein viel beschriebenes Problem des schulischen Mathematikunterrichts in der Oberstufe ist die einseitige Beschränkung auf eine algorithmisch-kalkülhafte Unterrichtsgestaltung. Dies birgt die Gefahr, dass Mathematik lediglich als Rezeptsammlung wahrgenommen wird. Im Seminar werden ausgewählte Inhalte der synthetischen und analytischen Geometrie so aufbereitet, dass der allgemeinbildende Charakter stärker zutage tritt. |
Einschreibung |
Einschreibung über OPAL vom 25.09.-23.10.2017 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Hoffkamp |
S |
Mi |
2. DS |
WIL C204 |
|
|
|
| |
Modul MN-SEBS-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Stochastik |
0+0+2 |
F01/744* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 7. Sem. (optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Stochastik im gymnasialen Mathematikunterricht (Wahrscheinlichkeitsbegriff; Bestimmung von Wahrscheinlichkeitsverteilungen; Simulation von Zufallsversuchen; Satz von Bayes; Zufallsgrößen und ihre Verteilungen; beschreibende und beurteilende Statistik) |
Einschreibung |
Einschreibung über OPAL vom 25.09.-23.10.2017 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Woithe |
S |
Mo |
4. DS |
WIL C106 |
|
|
|
| |
Modul MN-SEBS-MAT-DIDHL: Neue Medien im Mathematikunterricht |
0+0+2 |
F01/740* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 6. Sem. (optional im 5. Sem. oder im 7. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Der Einsatz elektronischer Medien, sogenannter 'Neuer Medien', im Mathematikunterricht ist Gegenstand der Lehrveranstaltung.
Exemplarisch werden mathematische und geometrische Software für das Simulieren, Modellieren und Visualisieren mathematischer Schulstoffe und Inhalte
vorgestellt sowie deren Einsatzmöglichkeiten im Mathematikunterricht diskutiert.
Der graphikfähige und programmierbare Taschenrechner sowie Tabellenkalkulationssoftware finden Beachtung.
Die Studenten bekommen einen Einblick in die didaktisch-methodische Nutzung der interaktiven Tafel. |
Einschreibung |
Einschreibung über OPAL vom 25.09.-23.10.2017 |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Koch |
V/S |
Do |
4. DS |
WIL A222/P |
|
|
|
| |
Modul MN-SEBS-MAT-DIDHL: Blockpraktikum |
0+0+2 |
F01/735* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 8. Sem. (optional schon im 5. Sem. oder 7. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
4-wöchiges Blockpraktikum an der Schule + Einführungsveranstaltung (Informationen auf der Homepage und im Schaukasten der Professur) |
Einschreibung |
Einschreibung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Weitere Lehrveranstaltungen bzw.
Lehrangebot im Rahmen des Ergänzungsbereichs für Lehramts-Studiengänge mit staatlichem Abschluss - Angebotskatalog der Fachrichtung Mathematik für Studierende des Fachs Mathematik • • •
| |
Tutorium "Einsatz interaktiver Tafeln im Mathematikunterricht" |
(fakultativ, 0+0+2) |
F01/739 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-2, EGS-SEGY-2, EGS-SEBS-2) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Das Tutorium dient als Vorbereitung zur Nutzung der interaktiven Tafel in Studium und Schule. Neben der Vermittlung von Fertigkeiten im Umgang mit der interaktiven Tafel als Projektions- und Präsentationsfläche gibt dieses Tutorium vor allem einen Überblick über die Nutzung der Software ActiveInspire. Anhand ausgewählter Situationen werden didaktische Einsatzmöglichkeiten der interaktiven Tafel im Mathematikunterricht entwickelt. |
Einschreibung |
über OPAL |
Leistungsnachweis |
Entwicklung und Präsentation eines Tafelbildes (2 Basispunkte – BW 6, Ergänzungsstudien neues Staatsexamen) |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Koch / Baldauf |
Ü |
|
|
|
|
|
18.09.2017: Zeit eingetragen |
|
Blockveranstaltung vom 26.02. bis 02.03.2018, jeweils 2. bis 4. DS |
| |
Lernwerkstatt |
(fakultativ) |
F01/766 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-3, EGS-SEGY-3, EGS-SEBS-3) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Termine laut Aushang; Unterrichtsbeispiele für problemorientiertes und entdeckendes Lernen im Mathematikunterricht der Sek. I |
Einschreibung |
Petra.Woithe@tu-dresden.de |
Leistungsnachweis |
Präsentation mit Ausarbeitung |
Dozent/Zeit/Ort |
Woithe |
S |
Mo |
6. DS |
WIL C104 |
ungerade Woche |
|
|
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs